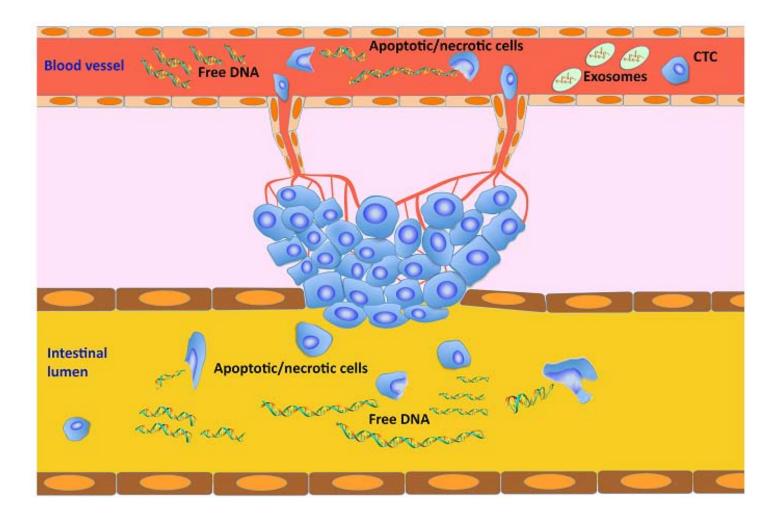
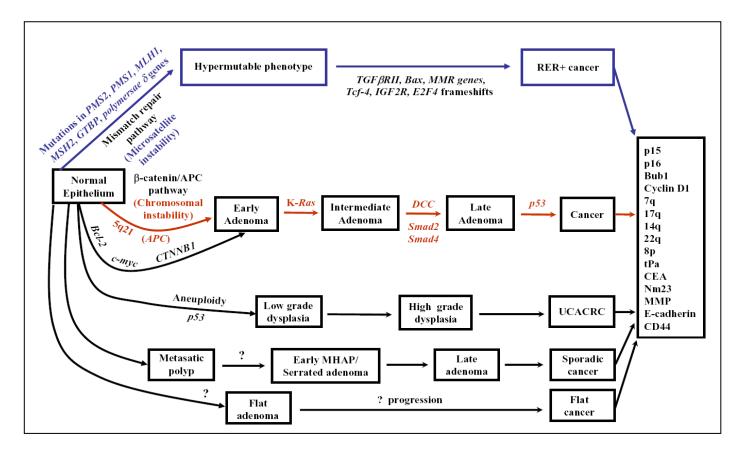


VIII CONGRESSO NAZIONALE GISCOR

WORKSHOP SCREENING CCR REGIONE LAZIO


GISCOR Tutling

ROMA, 3 E 4 OTTOBRE 2013 Auditorium Antonianum, Viale Manzoni 1


Le possibili applicazioni nello screening delle tecnologie biomolecolari.

Daniele Calistri

Genetic alterations in colorectal cancer

Table 1A DNA Single Ma	arkers in St	ool	Table 1B DNA Single Ma	irkers in St	ool				
Study	Marker	Test	Study	Marker	Testing Method	Study Population	Sensitivity	Specificity	
						52 CRC	94%		
Puig et al, 2000 ¹⁷⁶	KRAS	Mut				10 advanced A	70%		
,			Users at al. 0007a38	SFRP2	Methylation analysis	11 A	36%		
			Huang et al, 2007a ³⁸	ornr2	INCUIVIAUUTI analysis	8 hyperplastic polyps	38%	93%	
Traverso et al, 2002a ¹⁸	APC	Mutation analysis				6 UC	17%		
		matatorranayou				24 controls			
						29 A	21% ^b		
			Oberwalder et al, 2008 ⁴⁰	SFRP2	Methylation analysis	13 hyperplastic polyps	15% ^b	100% ^b	
raverso et al, 2002b ¹⁷⁷	MSI				26 controls				
				SFRP2		69 CRC	87%	93%	
			Wang et al, 2008 ⁴¹		Methylation analysis	34 A > 1 cm	62%		
oyton et al, 2003 ²⁰	DIA	Presence of	Wally Ct al, 2000		Wourylauon analysis	26 hyperplastic polyps	42%		
						30 controls			
/an et al, 2004 ¹⁷⁸		Mutatian analysis (all	Calistri et al, 200931	L-DNA	FL-DNA, cut-off 25 ng	100 CRC	79%	89%°	
van et al, 2004 ¹⁷⁰	KRAS	Mutation analysis (all	Callstill St al, 2003	L-DINA		100 controls		03/0-	
			Glöckner et al, 200942	TFPI2	Methylation analysis	73 CRC	76%-89%	79%-93%	
lüller et al, 2004 ³⁵	SFRP2	Meth	diouxiler et al, 2000 -	11112	inourjiatori anajoio	75 controls		1010 0010	
			Hellebrekers et al, 2009 ⁴³	GATA4	Methylation analysis	75 CRC	51%-71%	84%-93%	
alistri et al, 2004 ³⁰	L-DNA	FL-DN	nonobrokoro et al, 2000 -	Grint	ined graden analysis	75 controls		0110 0010	
,	2 5101	12.01	Melotte et al, 200944	NDRG4	Methylation analysis	75 CRC	53%-61%	93%-100%	
			molotio ot ul, 2000	nonu+	inourjiatori anajolo	75 controls		00/01/00/0	
enhard et al, 2005 ³⁶ HIC1	LIIC1	Meth	Kim et al, 200945	OSMR	Methylation analysis	69 CRC	38%	95%	
	11101	HICT Weth		001111	wearyiddon analysis	81 controls			
						22 CRC	41%		
Chan at al. 200E37		Math	Li et al, 2009 ⁴⁶	Vimentin	Methylation analysis	20 advanced A	45%	95%	
Chen et al, 2005 ³⁷	Vimentin	Meth				38 controls			

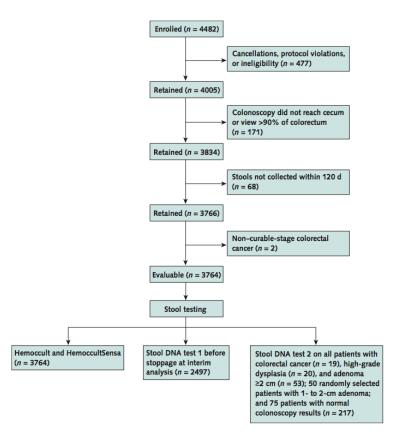
Clinical Colorectal Cancer, Vol. 10, No. 1, 8-23, 2011

Table 1C DNA Multiple M			Table 1D DNA Multip	ole Markers in Stool					
Study	Marker	Testing M	Study	Marker	Testing Method	Study Population	Sensitivity	Specificity	
	KRAS/TP53/APC	mutation ar				20 CRC	75%		
nlquist et al, 2000 ²¹	MSI	MSI in BA	Leung et al, 2007 ⁵¹	ATM/APC/MGMT/hMLH1/HLTF/SFRP2/GSTP1	methylation analysis	30 A	68%	90%	
	DIA	presence of long DI				30 controls			
	KRAS/TP53/APC	mutation ar				52 CRC	96%		
gore et al, 2003 ²²	MSI	MSI in BA				10 advanced A	80%	1	
	DIA	presence of long DI	Huang et al, 2007b ⁵⁰	SFRP2/HPP1/MGMT	methylation analysis	11 non-advanced A	64%	96%	
	L-DNA		nuting of al, 2007b	3/11/2/11/1/mdm/	methylation analysis	8 hyperplastic polyps	38%	3076	
listri et al, 2003 ²³	KRAS/TP53/APC	mutation ar				6 UC	17%		
	MSI	5-marker				24 controls			
una et el 000448	ATM/APC/MGMT/hMLH1/HLTF	mathulation	Onouchi et al, 2008 ¹⁸⁰	KRAS/TP53/APC	mutation analysis (PCR-SSCP)	33 CRC	55%	89%	
ung et al, 2004 ⁴⁸	ATW/APG/MGMT/TIMEHT/HETF	methylation a	01000111 01 01, 2000		matation analysis (FOR ODD)	63 controls		0376	
Vhitney et al, 2004 ²⁶	KRAS/TP53/APC	mutation ar		KRAS/TP53/APC	mutation analysis	12 CRC	25%		
	MSI	MSI in BA		MSI	MSI in BAT26	135 A > 1 cm	17%		
	DIA	presence of long DI	Ahlquist et al, 2008 ²⁵	DIA	presence of long DNA (4-site DIA)	469 A < 1 cm	4%	96%	
	KRAS/TP53/APC	mutation ar				341 hyperplastic polyps	5%	-	
	MSI	MSI in BA				1473 controls			
periale et al, 2004 ²⁷	DIA	presence of long DI		KRAS/APC	mutation analysis	19 CRC	58%	84%	
			Ahlquist et al, 2008 ²⁵	Vimentin	methylation analysis	103 A > 1 cm	46%		
						75 controls			
tko et al, 2005 ⁴⁹	CDKN2A/MGMT/hMLH1	methylation a	ltzkowitz et al, 2008 ⁵⁴	Vimentin	methylation analysis	42 CRC	86%	73%	
,				DIA	presence of long DNA (2-site DIA)	241 controls			
	APC	mutation ar				60 CRC	75%		
tzner et al, 2005 ¹⁶⁸	MSI	MSI in BA	Baek et al, 200952	MGMT/hMLH1/Vimentin	methylation analysis	22 advanced A	46%	87%	
	DIA	presence of long DI				30 non-advanced A	70%		
	KRAS/TP53/APC	mutation ar				37 controls 84 CRC	75%		
atsushita et al, 2005 ¹⁶⁹	MSI	MSI in B/				27 advanced A	44%	-	
tzkowitz et al, 2007 ²⁹	Vimentin	methylation a				29 non-advanced A	28%	89%	
	DIA		Nagasaka et al, 2009 ⁵³	RASSF1/SFRP2	methylation analysis	12 hyperplastic polyps	25%		
	CDKN2A (p16)	methylation a	nagasaka ot al, 2005		mouryauon anaryos	4 ischemic colitis	25%		
bactadagan at al 2007170	MSI	MSI in BA				2 UC	100%		
Abbaszadegan et al, 2007 ¹⁷⁹						113 controls	10078		
	long DNA	presence of long DNA (110 0010010			

Clinical Colorectal Cancer, Vol. 10, No. 1, 8-23, 2011

Table 2 RNA Marker	s in Stool									
Study	Marker	Testing Method	Study Population	Sensitivity	Specificity					
Single Markers										
Kanaoka et al, 2004 ⁵⁶	07000 (COV 0)	Nested RT-PCR	29 CRC	00%	100%					
Kaliduka et al, 200400	PTGS2 (COX-2)	Nesleu ni-run	22 controls	90%	100%					
Chies at al. 200760	KPAC and an 10 milliont	Nested RT-PCR and RFLP	29 CRC	41%	95%					
Chien et al, 2007 ⁶⁰	et al, 2007 ⁶⁰ KRAS codon 12 mutant		20 controls	4170	5070					
Leung et al, 2007 ⁵¹			20 CRC	50%	93%					
	PTGS2 (COX-2)	RT-PCR	30 A	4%						
			30 controls	470						
	Mul	tiple Markers								
			20 A > 1 cm							
Ahmed et al, 200763	IGF2/FLNA/TGFBI/CKS2/CSE1L/CXCL3/ DPEP1/KLK10/GUCA2B/II-12	Quantitative RT-PCR	10 IBD	> 95%ª	> 95% ^{a,b}					
	Di Li metro donebil re		20 controls							
Keen at al. 200962	MMD7/MVDI 2/DTCC2 /COV 2/TDC2	Our official of DCD	166 CRC	58%°	00%					
Koga et al, 2008 ⁶²	MMP7/MYBL2/PTGS2 (COX-2)/TP53	Quantitative RT-PCR	134 controls	00%%	88%¢					
Takai at al. 200061	DTCC2 (COV 21/MM/D7	Nested RT-PCR	62 CRC	90%	100%					
Takai et al, 2009 ⁶¹	PTGS2 (COX-2)/MMP7	Nesleu RI-PCR	29 controls	90%						

Table 3A Protein Single	e Markers in Stool, O	ther Than Hemog	Table 3B Protein Single Ma	Table 38 Protein Single Markers in Stool, Other Than Hemoglobin								
Study	Marker	Testi	Study	Marker		Testing Method	Study Popu	lation	Sensitivity	Specificity		
Kronborg et al, 2000 ¹⁸¹	Calprotectin	Immunoassay,	Yuan et al, 2006 ¹⁹⁰	Adnab-9		Immunoassay, ODR ≥ 0.05	105 CR 29 A 27 IBD	-	59% 83% 33%	90%ª		
Johne et al, 2001 ¹⁸²	Calprotectin	Immunoassay,					8 hyperplastic polyps 80 controls 36 CRC		0%			
Tibble et al, 2001 ¹⁸³	Table 3C P	Protein Mul	tiple Markers in S	tool, Other	r Tha	n Hemoglobin						
Kristinsson et al, 2001 ¹⁸⁴	Study		Marker			Testing Method	t	Stu	dy Popul	ation	Sensitivity	Specificity
									20 CRC		35%	
Davies et al, 2002 ⁸³								10 A > 1 cm		40%	90%ª	
Pant and McCracken, 200	Zou et al, 200) 7 ⁷⁶	HNP1-3			Immunoassay, cut-off not reported			10 upper GI cancer			40%
Failt and Mooracken, 200									10 IBD		80%	
									30 controls			
Kim et al, 2003 ⁶⁷						Immunoassay, cut-off not reported			186 CRC		79% -88%	95%-98% ^b
	Karl et al, 20	0884 S	100A12/hemoglobin-h	aptoglobin					113 advanced A		9%-22%	
Limburg et al, 2003 ¹⁸⁶									252 controls			
Mizuno et al, 2003 ¹⁸⁷									186 CR0	;	82%-88%	
	Karl et al, 20	08 ⁸⁴ \$100	A12/hemoglobin-hapto	globin/TIMP-	-1	Immunoassay, cut-off not reported			113 advanced A		12%-20%	95%-98% ^b
Hoff et al, 2004 ¹⁸⁸	Hoff et al, 2004 ¹⁸⁸							252 controls				
			100 Cl al, 2000	(S100A9)		nanoassay, caron lovor 27.4 ngring	75 contro	ols		11.00		
Hardt et al, 2004 ¹⁸⁹	Tumor M2-PK	Immunoass	Pucci et al, 200977	Clusterin	Dot blot	lot immunodosage, cut-off level 34.6 µg/g 50 controls			67%	84%		


Clinical Colorectal Cancer, Vol. 10, No. 1, 8-23, 2011

KRAS/TP53/APC	mutation analysis	31 CRC	52%	
MSI	MSI in BAT26	403 advanced A	15%	95%
DIA	presence of long DNA (4-site DIA)	648 polyps	8%	3576
		1423 controls		

The fecal DNA panel detected 16 of 31 invasive cancers, whereas Hemoccult II identified 4 of 31 (52% vs. 13% P=0.003).

The DNA panel detected 29 of 71 invasive cancers plus adenomas with highgrade dysplasia, whereas Hemoccult II identified 10 of 71 (41% vs. 14% P<0.001).

NEJM 351:2704-14, 2004

Ann Intern Med. 2008;149:441-450

Table 5. Presence of DNA Markers in Tumor Tissue*

Marker			SDT-1	1 Panel		SDT-2 Panel					
	Patients, n	K-ras, %	APC†, %	р53, %	BAT-26, %	Full Panel, %	Patients, n	K-ras, %	АРС‡, %	Vimentin, %	Full Panel, %
Cancer and high-grade dysplasia	20	45	35	25	0	60	35	51	60	63	94
Adenoma ≥1 cm	48	42	38	6	2	63	99	39	73	63	98
All screen-relevant neoplasms§	68	43	37	12	1	62	134	43	69	63	97

Stool DNA test 1 (SDT1) detected 20% of neoplasms, 11% by Hemoccult, 21% by HemoccultSensa

Stool DNA test 2 (SDT2) detected 46% of neoplasms, 16% by Hemoccult and 24% by HemoccultSensa.

SDT2 detected 46% of adenomas 1 cm or larger, 10% by Hemoccult and 17% by HemoccultSensa.

Problems: SDT-2 specificity was 84%, 96% Hemoccult and 95% HemoccultSensa

Ann Intern Med. 2008;149:441-450

Clinical Performance of an Automated Stool DNA Assay for Detection of Colorectal Neoplasia

Clinical Gastroenterology and Hepatology, april 2013, in press

automated multi-target sDNA assay: β-actin (a marker of total human DNA) mutant KRAS aberrantly methylated BMP3 and NDRG4, Fecal hemoglobin

459 asymptomatic patients before screening or surveillance colonoscopies and **544** referred patients

90% specificity, identified individuals with CRC with 98% sensitivity advanced precancers (AA and SSA) ≥1 cm was 57% for >2 cm it was 73% for >3 cm it was 83%

Cost-effectiveness analysis of colorectal cancer screening with stool DNA testing

Stool DNA testing every 2 years vs colonoscopy every 10 years: \$195

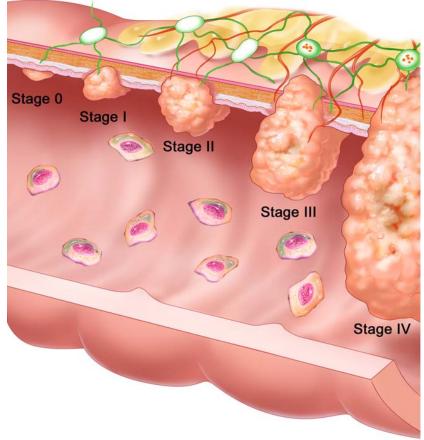
A similar comparison in the MISCAN and SimCRC models: **\$205 - \$213**

Gastroenterology. 2004;126:1270-9

\$13.000 per life-year gained by stool DNA test screening compared with no screening: **\$57 to \$70.** BMC Cancer. 2006;6:136

Stool DNA testing every 3 years (MISCAN and SimCRC models): \$40 to \$60.

Ann Intern Med. 2010;153:368-377


Multiple Detection of Genetic Alterations in Tumors and Stool Clinical Cancer Research, 2001

Fecal Multiple Molecular Tests to Detect Colorectal Cancer in Stool Clinical Gastroenterology and Hepatology, 2003

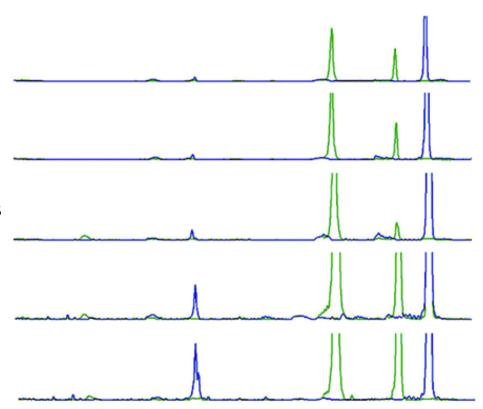
Detection of Colorectal Cancer by a Quantitative Fluorescence Determination of DNA Amplification in Stool Neoplasia, 2004

Quantitative fluorescence determination of long-fragment DNA in stool as a marker for the early detection of colorectal cancer Cellular Oncology, 2009

Fecal DNA for Noninvasive Diagnosis of Colorectal Cancer in Immunochemical Fecal Occult Blood Test–Positive Individuals Cancer Epid Biom Prev, 2010 • DNA amplification of exfoliated cells in stool has shown to have an important diagnostic

potential.

Fluorescent Long DNA (FL-DNA)


DNA extraction from stool

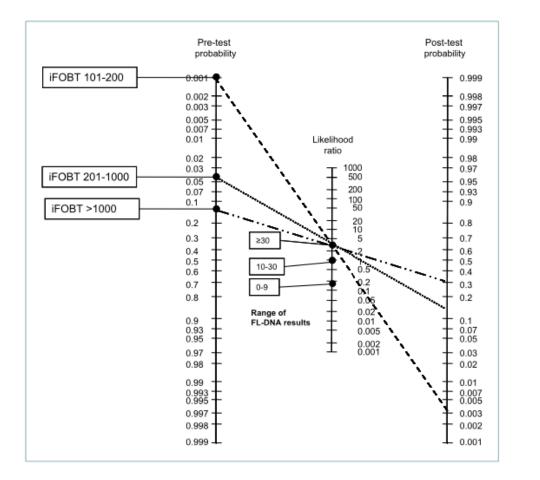
Amplification of different DNA fragment longer than 200 bp

Quantification by fluorescent primers and capillary electrophoresis

Standard curve

European patent Nord America patent

Sensitivity and specificity of FL-DNA analysis

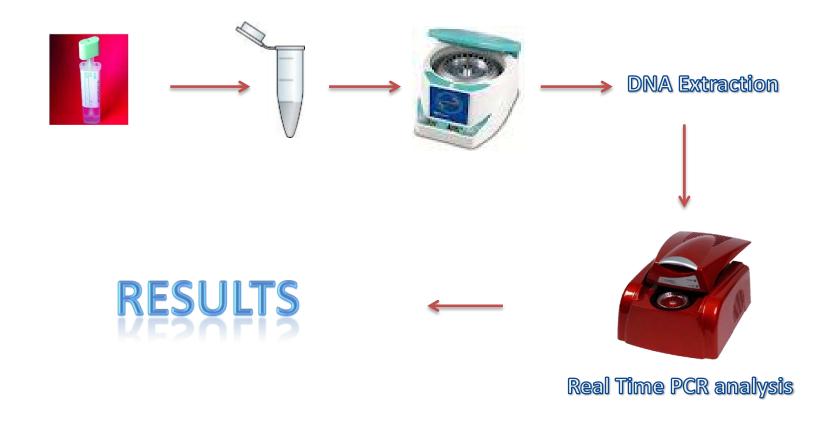

DNA levels	Healthy donors		Patients		% Sensitivity (95% CI)	% Specificity (95% CI)	% Accuracy ¹ (95% CI)
Cut-offs (ng)	Positive	Negative	Positive	Negative			
15	22	78	84	16	84 (77-91)	78 (70-86)	81 (76-86)
20	16	84	82	18	82 (76-90)	84 (77-91)	83 (78-88)
25	11	89	79	21	79 (71-87)	89 (83-95)	84 (79-89)
30	8	92	70	30	70 (61-79)	92 (87-97)	81 (76-86)
35	5	95	68	32	68 (59-77)	95 (91-99)	82 (77-87)
40	4	96	65	35	65 (56-74)	96 (92-100)	81 (76-86)

Neoplasia (2004) 6:536–540 Cellular Oncology (2009) 31:11–17

FOBT classes (ng/mL)	classes Cases		FL-DNA classes (ng)	Cases	FOBT + FL-DNA (%)	Prevalence Cancer (%)
			0-9	88	0	0
101-200	201	0	10-30	72	0	0
			≥ 30	41	0	0
			0-9	102	0.9	1
201-1000	239	4.6	10-30	92	4.1	4
			≥ 30	45	13.0	13
			0-9	40	2.5	2
>1000	120	12.5	10-30	52	11.3	10
			≥ 30	28	30.8	32

560 individuals aged 50 to 69 years with a positive iFOBT were recruited from an Italian FOBT regional screening program

Cancer Epidemiol Biomarkers Prev (2010) 19:2647–54



Cancer Epidemiol Biomarkers Prev (2010) 19:2647–54

RT FL-DNA

A standardized approach of semi-automatic extraction and DNA integrity analysis for colorectal cancer early diagnosis.

submitted

Best cut-off value for both FL-DNA analysis approaches

		CE FL-DNA			RT-FL-DNA	
Cut-offs (ng)	% Sensitivity (95% CI)	% Specificity (95% CI)	% Accuracy (95% CI)	% Sensitivity (95% CI)	% Specificity (95% CI)	% Accuracy (95% CI)
≥5	91 (73-97)	33 (27-39)	38 (32-44)	78 (58-90)	70 (64-76)	71 (65-76)
≥ 10	91(73-97)	44 (37-50)	48 (42-54)	74 (53-87)	80 (74-85)	79 (74-84)
≥15	78 (58-90)	67 (61-73)	68 (62-74)	70 (49-84)	87 (82-91)	85 (80-89)
≥20	70 (49-84)	79 (73-84)	78 (72-83)	61 (41-78)	91 (87-85)	88 (84-92)
≥25	57 (37-74)	84 (79-89)	82 (76-86)	57 (37-74)	94 (91-97)	91 (87-94)
≥30	52 (33-71)	90 (86-94)	87 (82-90)	57 (37-74)	98 (95-99)	94 (90-96)
≥40	43 (26-63)	96 (93-98)	91 (87-94)	57 (37-74)	99(96-100)	95 (91-97)
≥50	39 (22-59)	99(96-100)	93 (89-96)	48 (29-67)	99(96-100)	94 (90-96)

ADK vs. others

Case series: 241

MULTICENTRE EVALUATION OF FLUORESCENCE LONG DNA (FL-DNA) METHOD FOR EARLY DIAGNOSIS OF COLORECTAL LESIONS

Case series 1:

Subjects of both genders who have consented to take part to the screening program;

Age \geq 50 and \leq 69 years;

Subject resulted positive to occult blood test (OC-Sensor, Alfa Wassermann);

Subjects candidate to a complete a colonoscopy examination; Written informed consent.

Case series 2:

Subjects of both genders afferent consecutively to Gastroenterology Units for colonoscopy examinations independently to symptoms or specific pathologies;

Subjects who are not part of the case series 1;

Subjects without a previous cancer history;

Written informed consent.

Case series: 2300

Conclusions

Nucleic acids extraction from blood and stool is easy to set up and relatively non-invasive, representing a very attractive tool to detect genetic and epigenetic alterations.

A great variability in terms of concentration, sensibility and specificity values underlines the presence of various pre-analytic and analytic factors that could influence an unequivocal diagnostic impact value.

Standardization in sample collection and analysis are needed to permit a good reproducibility.

Analysis of gene alterations are still expensive and time consuming,

DNA integrity analysis could be a good candidate and its potential could further increase due also to its relatively not expensive approaches.

Multicentre studies in large cohort of individuals are fundamental to clarify the role in clinical settings of these molecular markers.