What's new in CRC screening? ...Al...

Emanuele Rondonotti, MD, PhD
UOC Gastroenterologia, Ospedale Valduce, Como.

Al for Colonoscopy:

- Detection (CADe)
- Characterization (CADx)
- Inflammatory scoring (IBD)
- Quality of bowel prep
- Report drafting/analysis
- CIR calculation
- Polyp sizing...

Al for Colonoscopy:

- Detection (CADe)
- Characterization (CADx)
- Inflammatory scoring (IBD)
- Quality of bowel prep
- Report drafting/analysis
- CIR calculation
- Polyp sizing ...

CADe

CADe increases ADR

Author, journal, year	N. of papers	Results (95%CI)
Hassan C, GIE 2021	5	ADR RR: 1.44 (1.27-1.62)
Barua I, Endoscopy 2021	5	ADR RR: 1.52 (1.31-1.77)
Li J, Eur J GH 2021	5	ADR RR: 1.75 (1.52-201)
Zhang Y, J Laparoendosc Adv Surg Tech A, 2021	7	ADR OR: 1.72 (1.52-1.95)
Xu Y, PlosOne 2021	7	PDR AUC: 0.98 (0.96-0.99)
Ashat M, Endosc Int Open 2021	6	ADR OR: 1.76 (1.55-2.00)
Deliwala SS, Int J Colorect Dis 2021	6	ADR OR: 1.77 (1.57-2.08)
Nazarin S, J Med Int Res 2021	8	ADR OR: 1.53 (1.32-1.77)
Huang D, Int J Colorectal Dis 2022	10	ADR RR: 1.43 (p<0.001)

Limitations: Mostly experts endoscopists, limited number of patients, Vs white light, patient heterogeneity.

ORIGINAL ARTICLE

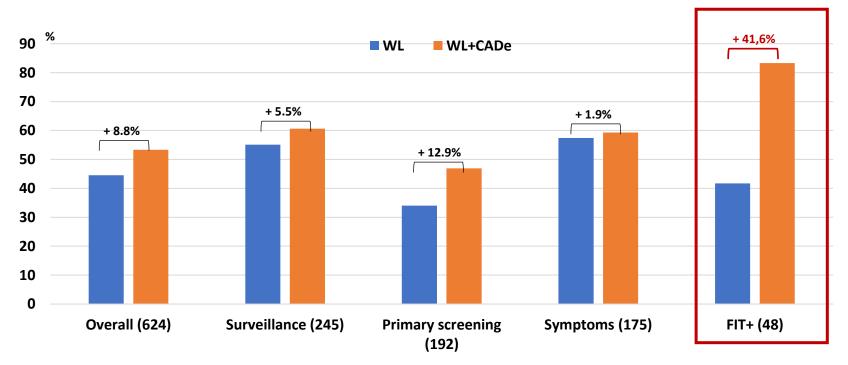
Full-spectrum (FUSE) versus standard forwardviewing colonoscopy in an organised colorectal cancer screening programme

Cesare Hassan, ¹ Carlo Senore, ² Franco Radaelli, ³ Giovanni De Pretis, ⁴ Romano Sassatelli, ⁵ Arrigo Arrigoni, ⁶ Gianpiero Manes, ⁷ Arnaldo Amato, ³ Andrea Anderloni, ⁸ Franco Armelao, ⁴ Alessandra Mondardini, ⁶ Cristiano Spada, ⁹ Barbara Omazzi, ⁷ Maurizio Cavina, ⁵ Gianni Miori, ⁴ Chiara Campanale, ⁹ Giuliana Sereni, ⁵ Nereo Segnan, ² Alessandro Repici^{8, 10}

Adenoma detection by Endocuff-assisted versus standard colonoscopy in an organized screening program: the "ItaVision" randomized controlled trial

Authors

Manuel Zorzi¹, Cesare Hassan², Jessica Battagello¹, Giulio Antonelli^{2,3,4}, Maurizio Pantalena⁵, Gianmarco Bulighin⁶, Saverio Alicante⁷, Tamara Meggiato⁸, Erik Rosa-Rizzotto⁹, Federico Iacopini⁴, Carmelo Luigiano¹⁰, Fabio Monica¹¹ ⁹, Arrigo Arrigoni¹², Bastianello Germanà¹³, Flavio Valiante¹⁴, Beatrice Mallardi¹⁵, Carlo Senore¹⁶, Grazia Grazzini^{1,15}, Paola Mantellini¹⁵, and the ItaVision Working Group


ItaVision Working Group

Angelo Bellumat¹⁴, Andrea Buda¹⁴, Elisabetta Buscarini⁷, Lucas Cavallaro¹³, Aldo Ceriani⁸, Franca De Lazzari⁹, Angelo Dezi², Ennio Guido⁹, Giuseppe labichino¹⁰, Claudio Londoni⁷, Nicoletta Merlini⁵, Francesca Murer⁵, Neri Nardini¹⁵, Ephrem Ntakirutimana⁶, Emma Paulon¹¹, Anna Rostello⁶, Marco Silvani¹⁶, Nicoletta Stefani¹¹, Paolo Viaggi¹⁰

AID-2 study

CADe increases ADR in FIT-based CCR program

• **Design:** prospective multicenter parallel RCT

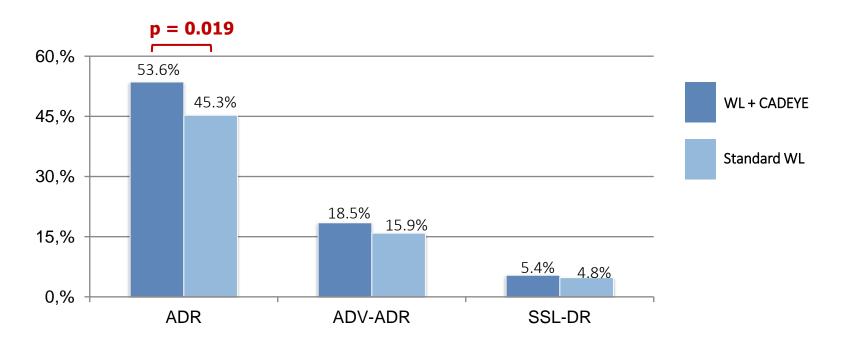
• Centres: Milano, Como, Pavia, Padova, Crema

• Patients: FIT+ (CRC screening program)

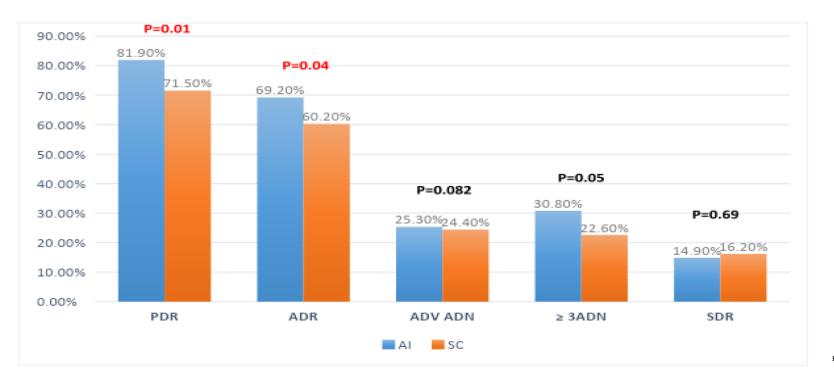
• Arms: HD-WL colonoscopy vs HD-WL-Al colonoscopy

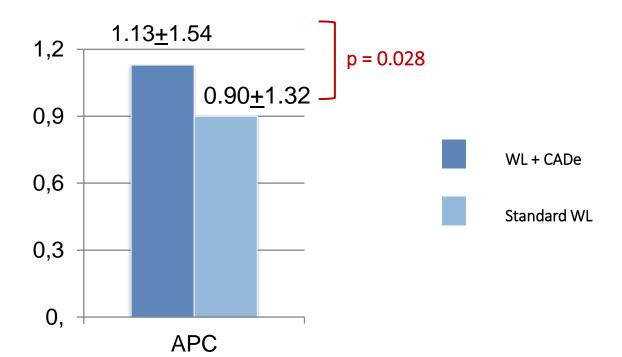
• AI system: CAEYE™ (Fujifilm Co.)

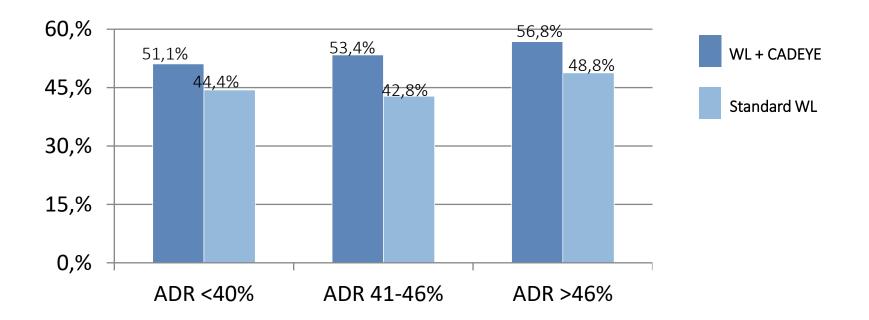
• **Hypothesis, main outcome:** Ai increases in (43% → 53%)


• Sample size: 778 patients

	WL+CADe	Standard WL	p value
Enrolled patients	405	395	
Mean age, SD	61.4, 7.0	61.1,7.5	0.464
Gender, Males (%) First FIT round (%) Overall BBPS 6-7 8-9 Insertion time, mean (SD) Mucosa inspection time, mean (SD)	52.6	49.6	0.437
	34.6	35.7	0.767
	131 274	112 283	0 248
	456.1 (245.2)	502.7 (638.2)	0.174
	572.2 (168.2)	568.6 (190.8)	0.403


CADe increases ADR in FIT-based CCR program


CADe increases ADR in FIT-based CCR program


CADe increases APC in FIT-based CCR program

CADe increases ADR in FIT-based CCR program: endoscopist expertise

Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study

Miguel Areia*, Yuichi Mori*, Loredana Correale, Alessandro Repici, Michael Bretthauer, Prateek Sharma, Filipe Taveira, Marco Spadaccini, Giulio Antonelli, Alanna Ebigbo, Shin-ei Kudo, Julia Arribas, Ishita Barua, Michal F Kaminski, Helmut Messmann, Douglas K Rex, Mário Dinis-Ribeiro*, Cesare Hassan*

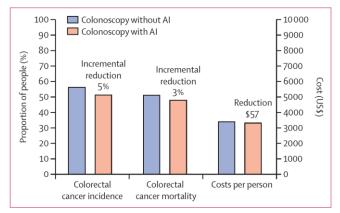


Figure 2: Results of the primary health and cost analyses
Expected risk of colorectal cancer incidence and mortality of colonoscopy
screening with and without AI compared with non-screening. Estimated costs
per person are also presented. AI=artificial intelligence.

	No screening	Colonoscopy without Al	Colonoscopy with Al
Colorectal cancer cases per year	148204	84463	77268
Deaths from colorectal cancer per year	56278	29342	27 253
Colorectal cancer care cost per year, billion \$	\$10.90	\$6.33	\$5.79
Screening costs per year,* billion \$		\$5.13	\$5.38
Total cost per year, billion \$	\$10.90	\$11.46	\$11.17
All costs are in LICE. At artificial intelligence, *Including not most amine follow up colonoscopies and complications.			

All costs are in US\$. Al=artificial intelligence. *Including polypectomies, follow-up colonoscopies, and complications.

Table 2: Projection on the US population of the superimposed screening strategies, assuming a 60% adherence to screening colonoscopy among individuals aged 50–100 years

CADe study limitations:

- Diminutive polyps
- Unblinded
- "Hawthorne" effect
- Hype cycle curve (peak phase)
- Few expert centres
- Interval cancers? Mortality?

CADX

Real time optical diagnosis (leave-in, R&D):

- Accuracy below recommended levels outside of expert centers
 Rees C et al, Gut 2017; 66: 887-895
- Many barriers for implementation in routine practice

Willems P et al. Endosc Int Open 2020;8:E684-E692.

Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy

A Prospective Study

Yuichi Mori, MD, PhD; Shin-ei Kudo, MD, PhD; Masashi Misawa, MD, PhD; Yutaka Saito, MD, PhD; Hiroaki Ikematsu, MD, PhD; Kinichi Hotta, MD; Kazuo Ohtsuka, MD, PhD; Fumihiko Urushibara, MD, PhD; Shinichi Kataoka, MD; Yushi Ogawa, MD; Yasuharu Maeda, MD, PhD; Kenichi Takeda, MD, PhD; Hiroki Nakamura, MD; Katsuro Ichimasa, MD, PhD; Toyoki Kudo, MD, PhD; Takemasa Hayashi, MD, PhD; Kunihiko Wakamura, MD, PhD; Fumio Ishida, MD, PhD; Haruhiro Inoue, MD, PhD; Hayato Itoh, PhD; Masahiro Oda, PhD; and Kensaku Mori, PhD

Conclusion: Real-time CAD can achieve the performance level required for a diagnose-and-leave strategy for diminutive, non-neoplastic rectosigmoid polyps.

endocytoscopy + NBI or Methylen blue

Artificial intelligence assisted optical diagnosis for resect and discard strategy in clinical practice (Artificial intelligence BLI Characterization; ABC study)

Emanuele Rondonotti, Cesare Hassan, Giacomo Tamanini, Giulio Antonelli, Gianluca Andrisani, Giovanni Leonetti, Silvia Paggi, Arnaldo Amato, Giulia Scardino, Dhanai Di Paolo, Giovanna Mandelli, Nicoletta Lenoci, Natalia Terreni, Alida Andrealli, Roberta Maselli, Marco Spadaccini, Piera A Galtieri, Loredana Correale, Alessandro Repici, Francesco Maria Di Matteo, Luciana Ambrosiani, Emanuela Filippi, Prateek Sharma, Franco Radaelli.

Affiliations below.

DOI: 10.1055/a-1852-0330

Artificial intelligence assisted optical diagnosis for resect and discard strategy in clinical practice (Artificial intelligence BLI Characterization; ABC study)

Emanuele Rondonotti, Cesare Hassan, Giacomo Tamanini, Giulio Antonelli, Gianluca Andrisani, Giovanni Leonetti, Silvia Paggi, Arnaldo Amato, Giulia Scardino, Dhanai Di Paolo, Giovanna Mandelli, Nicoletta Lenoci, Natalia Terreni, Alida Andrealli, Roberta Maselli, Marco Spadaccini, Piera A Galtieri, Loredana Correale, Alessandro Repici, Francesco Maria Di Matteo, Luciana Ambrosiani, Emanuela Filippi, Prateek Sharma, Franco Radaelli.

Affiliations below.

DOI: 10.1055/a-1852-0330

- 4 Centers
- 18 endoscopists: (9 experts)
- 596 diminutive RectoSigmoid Polyps (DRSPs)
- NPV DRSPs >90% for Endoscopist+AI

Artificial intelligence assisted optical diagnosis for resect and discard strategy in clinical practice (Artificial intelligence BLI Characterization; ABC study)

Emanuele Rondonotti, Cesare Hassan, Giacomo Tamanini, Giulio Antonelli, Gianluca Andrisani, Giovanni Leonetti, Silvia Paggi, Arnaldo Amato, Giulia Scardino, Dhanai Di Paolo, Giovanna Mandelli, Nicoletta Lenoci, Natalia Terreni, Alida Andrealli, Roberta Maselli, Marco Spadaccini, Piera A Galtieri, Loredana Correale, Alessandro Repici, Francesco Maria Di Matteo, Luciana Ambrosiani, Emanuela Filippi, Prateek Sharma, Franco Radaelli.

Affiliations below.

DOI: 10.1055/a-1852-03 Step 2: Step 3: Step 1: Al prediction **Combined prediction Endoscopist prediction BLI** switch on Al switch on High conf. High conf. Low conf. NA Low conf. Outcome recorded: Outcome recorded: Endoscopist prediction by Combined "endoscopist + AI" using BLI technology prediction through BASIC classification Confidence level Confidence level Post-polypectomy surveillance Post-polypectomy surveillance interval based on endoscopist interval based on combined prediction prediction

CADx technical feasibility and combined high-confidence rate

CADx «technical» feasibility:

→ 541/596: **90.8%** (95%CI [88.2-92.9]%)

CADx technical feasibility and combined high-confidence rate

CADx «technical» feasibility:

```
→ 541/596: 90.8% (95%CI [88.2-92.9]%)
```

→ Unstable characterization: 7.9%→ Impossible characterization: 1.3%

CADx technical feasibility and combined high-confidence rate

CADx «technical» feasibility:

```
→ 541/596: 90.8% (95%CI [88.2-92.9]%)
```

→ Unstable characterization: 7.9%
→ Impossible characterization: 1.3%

Combined CADx-endoscopist high confidence rate:

Endoscopist-	
Number of DRSPs evaluated	550/596
High-confidence rate	92.3%

Clinical performances

Accuracy parameter	Endoscopist+AI (95% CI)	
Sensitivity	88.6% (83.7-91.4)	
Specificity	88.1% (83.9-91.4)	
Positive predictive value	85.1% (79.8-89.1)	
Negative predictive value	91.0% (87.1-93.9)	
Accuracy	88.4% (85.3-90.9)	

Rondonotti E et al, Endoscopy 2022 [Epub]

Clinical performances

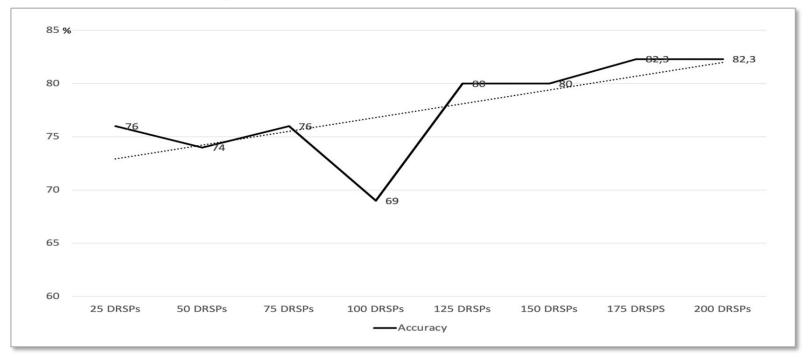
Accuracy parameter	Endoscopist+AI (95% CI)	Endoscopist (95%CI)
Sensitivity	88.6% (83.7-91.4)	88.6% (83.6-92.2)
Specificity	88.1% (83.9-91.4)	88.8% (84.5-91.9)
Positive predictive value	85.1% (79.8-89.1)	86.1% (80.8-90.0)
Negative predictive value	91.0% (87.1-93.9)	90.9% (86.8-93.7)
Accuracy	88.4% (85.3-90.9)	88.7% (85.7-91.2)

p= ns

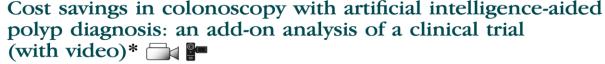
Rondonotti E et al, Endoscopy 2022 [Epub]

Table 3. Performance of Standard and AI-Derived CADx Optical Diagnosis of Small Rectosigmoid Polyps during Colonoscopy Compared with
Histopathology.*

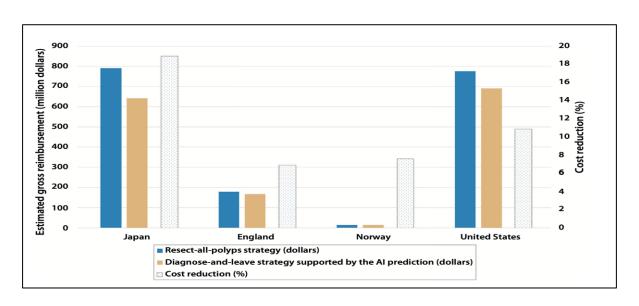
r iistoputiiology.		
Parameter	Standard Diagnosis	CADx Diagnosis
Sensitivity	88.4 (84.3 to 91.5)	90.4 (86.8 to 93.1)
Specificity	83.1 (79.2 to 86.4)	85.9 (82.3 to 88.8)
Positive predictive value	78.9 (74.3 to 82.9)	82.0 (77.6 to 85.6)
Negative predictive value	91.5 (88.5 to 93.8)	92.8 (90.1 to 94.9)
High confidence in optical diagnosis	74.2 (70.9 to 77.3)	92.6 (90.6 to 94.3)



Barua I et al, NEJM Evidence [Epub]



CADx for non-experts



Yuichi Mori, MD, PhD,¹ Shin-ei Kudo, MD, PhD,² James E. East, MD,^{3,4} Amit Rastogi, MD,⁵ Michael Bretthauer, MD, PhD,^{1,6} Masashi Misawa, MD, PhD,¹ Masau Sekiguchi, MD, PhD,^{7,8,9} Takahisa Matsuda, MD, PhD,^{7,8,9} Yutaka Saito, MD, PhD,⁹ Hiroaki Ikematsu, MD, PhD,¹⁰ Kinichi Hotta, MD,¹¹ Kazuo Ohtsuka, MD, PhD,¹² Toyoki Kudo, MD, PhD,¹ Kensaku Mori, PhD¹³

Yokohama, Tokyo, Kashiwa, Shizuoka, Nagoya, Japan; Oxford, United Kingdom; Kansas City, Kansas, USA; Oslo, Norway

CADe study limitations:

- Experienced endoscopists
- Suboptimal results (Al alone)
- Polyps always resected
- Interaction human being/Al

What we know:

- Early integration of AI represent a reasonable measure of quality assurance for all the stakeholders involved in screening programs
- Al-assisted optical characterization is promising and might boost the implementation of leave-in and R&D strategy in clinical practice
- More clinical data are needed
- Al cannot substitute endoscopist
- Al does not offset the need for a high-level of expertise and training (characterization!)

Expectations:

- Clinical testing of new AI features (CIR calculation, quality of bowel prep, polyp sizing etc...)
- CADe: AI + mucosal exposure devices
- CADx: 2nd generation CADx systems (continuous improvement!)

