

CAsI5

Lerici

Valutazione e Trattamento Endoscopico delle Lesioni Neoplastiche Superficiali del Retto

XIII CONGRESSO NAZIONALE 2018

25-26 Ottobre 2018 Villa Marigola, Lerici (SP)

Lucio PETRUZZIELLO

U.O.C. Endoscopia Digestiva Chirurgica Fondazione Policlinico Universitario "A. Gemelli" Centre for Endoscopic Research, Terapeutics and Training (CERTT) European Endoscopy Training Centre (EETC) Roma

Johann Gottfried Steffan, Lerici 1900, acquerello

CORSO PRE-CONGRESSO 25 Ottobre 2018

Rectal Superficial Neoplastic Lesions: Endoscopy vs Surgery

Distal rectum: Endoscopy Point ov View

Endoscopist's point of view

 The Endoscopist is used to deal with polyps or "Superficial Neoplastic Lesions"

• The **Surgeon** is used to deal with **cancers** (sent by the endoscopist...)

T2 ADK at ARJ: Diagnosis

T2 ADK at ARJ: After NAD

T2 ADK at ARJ: After TAE

T2 ADK at ARJ 4 yrs FU

Non Granular – Pseudo Depressed LST

► Incomplete ER \rightarrow Surgery

Hystology: T1

Endoscopy: Primary clinical impact of staging rectal cancer

- To differentiate superficial from advanced lesions (T0-T1 sm1 disease from deeper T invasion disease)
- Superficial lesions with minimal risk of nodal metastases (<1%) can be treated Endoscopically

Stage	T	N	М	Dukes*	MAC*
0	Tis	NO	M0	—	-
1	T1	NO	MO	А	А
	T2	NO	M0	А	B1
IIA	T3	NO	M0	В	B2
IIB	T4a	NO	M0	В	B2
IIC	T4b	NO	M0	В	B3
IIIA	T1-T2	N1/N1c	M0	C	C1
	T1	N2a	M0	C	C1
IIIB	T3—T4a	N1/N1c	M0	C	C2
	T2-T3	N2a	M0	C	C1/C2
	T1-T2	N2b	M0	C	C1
IIIC	T4a	N2a	M0	C	C2
	T3–T4a	N2b	MO	C	C2
	T4b	N1-N2	MO	C	G
IVA	Any T	Any N	M1a	—	-
IVB	Any T	Any N	M1b	—	-

Cancerised Adenomas Micro-staging: Assessment of the Metastatic Risk

Pit Pattern Classification (Magnifying Chromoendoscopy)

Nonneoplastic pattern	Noninvasive pattern	Invasive pattern		
$I \cdot II$	$\text{IIIL} \cdot \text{IIIS} \cdot \text{IV} \cdot (\text{part of VI})$	VI · VN		
1	IIIL IV IV	VI		
	IIIS			
I		VN		

Normal hyperplastic polyp

Adenoma * m ** sm-slight

#sm-deep

NICE (NBI International Colorectal Endoscopic) Classification

Hayashi N. Gastrointest Endosc. 2013

Non Lifting Sign

Uno Y el al. Gastrointest Endosc 1994

Non Lifting Sign

Comparison of Endoscopic Diagnosis of the depth of SM Cancer

Diagnostic Method	Overall Accuracy	Sensitivity	Specificity	PPV	NPV
Magnifying Chromoendoscopy	98.8%	85.6%	99.4%	86.5%	99.4%
Non Lifting Sign	94.8%	61.5%	98.4%	80.0%	96.0%
NICE Classification	87.7%	84.8%	88.7%	71.8%	94.5%

Iwatate M. Diagn Ther Endosc. 2012

Morphology and Size of LSTs and rate of Sm invasion

	10 mm	20 mm	30 mm	40 mm	Total
LST-G	0%	0%	6%	0%	0.6%
LST-G Mixed	5%	13%	6%	20%	11%
LST-NG	6%	29%	44%	50%	14%

LST-GM (Is-IIa)

LST-NG

Saito Y. Digestive Endoscopy 2009

Biopsy

Sampling depth not deeper than Lamina Propria

Biopsy: False Positive Non Lifting Sign

Biopsy

Only to confirm unresectability

84 M - ASA III - EUS T2, NO - CT & MR T3, NO Radical Surgery or Adjuvant RT+CT?

G2 6000µ width - 4000µ depth Vertical margin – (1000µ) Budding + LV+

Is, Mid Rectum Endoscopy: suspect T1 (Pit Pattern V) CT and MRI: T2-3 N+

Is, Mid Rectum Endoscopy: suspect T1 (Pit Pattern V) CT and MRI: T2-T3 N+

• RXT + CHT

Low Anterior Resection

• ypT0, N0

EUS in Staging Rectal Cancer

- The sensitivity of EUS is higher for advanced disease (>T2) than for early disease (T0-T1)
 - Pooled sensitivity 87.8%
 - Pooled specificity 98.3%
- Nodal staging accuracy was found to be modest for EUS (67% sensitivity, 78% specificity) and not statistically different over MRI ant CT

Bipat S. Radiology 2004 Lahaye MJ. Semin Ultrasound CT MR 2005 Puli SR. Ann Surg Oncol 2009 Puli SR. Dig Dis Sci 2010

Rectal Polypoid lesions

LST-G > 2.5 cm: EPMR

EPMR (Monofilament Snare)

En Bloc EMR in CR lesions >2 cm: Recurrence

Study	Recurrences	Lesions		Proportion 95%-Cl
En-Bloc Resection				
Bergmann (2003)	0	33	—	0.00 [0.00; 0.11]
Bories (2006)	2	14		0.14 [0.02; 0.43]
Dos Santos (2011)	1	109	-	0.01 [0.00; 0.05]
Ferrara (2010)	6	77		0.08 [0.03; 0.16]
Higaki (2003)	0	5	•	0.00 [0.00; 0.52]
Huang (2009)	1	31	—	0.03 [0.00; 0.17]
Hurlstone (2005)	0	5	•	0.00 [0.00; 0.52]
Hurlstone (2004)	2	22		0.09 [0.01; 0.29]
lishi (2000)	0	14	— ——	0.00 [0.00; 0.23]
Jin (2009)	1	81	-	0.01 [0.00; 0.07]
Kaltenbach (2007)	0	28	•	0.00 [0.00; 0.12]
Katsinelos (2006)	0	5	•	0.00 [0.00; 0.52]
Katsinelos (2006)	4	22		0.18 [0.05; 0.40]
Kobayashi (2012)	1	21		0.05 [0.00; 0.24]
Lee (2012)	3	39		0.08 [0.02; 0.21]
Luigiano (2009)	2	62		0.03 [0.00; 0.11]
Mannath (2011)	2	54	—	0.04 [0.00; 0.13]
Saito (2010)	2	74	■	0.03 [0.00; 0.09]
Tajika (2011)	1	50	—	0.02 [0.00; 0.11]
Tanaka (2001)	2	40		0.05 [0.01; 0.17]
Terasaki (2012)	1	68	—	0.01 [0.00: 0.08]
Woodward (2012)	9	185	+	0.05 [0.02; 0.09]
Pooled RE Estimate				0.03 [0.02; 0.05]
I-squared = 38.2 %, Q = 34, df = 21, p = 0.0363				
			0 0.25 0.5 0	. [.] 75

Beldebos TDG. Endoscopy 2014

PM-EMR in CR lesions >2 cm: Recurrence

Study	Recurrences	Lesions		Proportion	95%-CI
Piecemeal Resection					
Ah Soune (2010)	3	24		0.12 [0	0.03: 0.32]
Arebi (2007)	56	145		0.39 [0	0.31; 0.47}
Barendse (2012)	18	58		0.31 [(0.20; 0.45]
Bergmann (2003)	2	32		0.06 [0	0.01; 0.21]
Bories (2006)	3	19		0.16 [0	0.03; 0.40]
Brooker (2002)	14	34		0.41 [0	0.25; 0.59]
Conio (2010)	8	216	—	0.04 [0	0.02; 0.07]
Conio (2004)	21	96		0.22 [0	0.14; 0.31]
Dos Santos (2011)	4	13		0.31 [0	0.09; 0.61]
Ferrara (2010)	6	92		0.07 [0	0.02; 0.14]
Higaki (2003)	4	18		0.22 [0	0.06; 0.48]
Huang (2009)	10	46		0.22 [0	0.06; 0.36]
Hurlstone (2005)	5	57		0.09 [0	0.03; 0.19]
Hurlstone (2004)	8	36	_	0.22 [0	0.10: 0.39]
lishi (2000)	22	41		0.54 [0	0.37; 0.69]
Jin (2009)	2	13		0.15 [(0.02; 0.45]
Kaltenbach (2007)	8	49		0.16 [0	0.07; 0.30]
Katsinelos (2006)	4	14		0.29 [0	0.08; 0.58]
Katsinelos (2006)	16	30		- 0.53 [0	0.34; 0.72]
Khashab (2009)	24	135		0.18 [0	0.12; 0.25]
Kobayashi (2012)	11	35		0.31 [0	0.17; 0.49]
Lee (2012)	26	74		0.35 [0	0.24; 0.47]
Luigiano (2009)	4	80		0.05 [0	0.01; 0.12]
Mannath (2011)	12	67		0.18 [0	0.10; 0.29]
Saito (2012)	31	154		0.20 [0	0.14; 0.27]
Sakamoto (2012)	42	222		0.19 [0	0.14; 0.25]
Seo (2010)	5	44		0.11 [(0.04; 0.25]
Stergiou (2003)	12	37		0.32 [0	0.18; 0.50]
Tajika (2011)	15	54	─── ─	0.28 [0	0.16; 0.42]
Tanaka (2001)	4	38		0.11 [0	0.03; 0.25]
Terasaki (2012)	13	105		0.12 [0	0.07; 0.20]
Woodward	40	234		0.17 [0	0.13; 0.23]
Pooled RE Estimate				0.20[0	0.16; 0.25]
I-squared = 85.1 %, Q = 207.4, df = 31, p<0.0001					
			0 0.25 0.5	0.75	

Beldebos TDG. Endoscopy 2014

Problem with EPMR:

Difficult hystologic assessment

Endoscopic Submucosal Dissection (ESD)

Correct specimen arrangement

Correct hystopathologic assessment

Efficacy and safety of endoscopic submucosal dissection for colorectal neoplasia: a systematic review A. Repici¹, C. Hassan¹, D. De Paula Pessoa¹, N. Pagano¹, A. Arezzo², A. Zullo¹, R. Lorenzetti¹, R. Marmo³

 Complete resection 	96%
 Post-ESD surgery 	2%
 Bleeding 	2%
 Perforations 	4%
Mortality	0%

Endoscopy 2012

ESD Perforation

ESD Perforation

Problems with ESD

Higher rate of complications than EMR Difficult and long procedure Compliance of patients (CO_2) **General Anesthesia** Very expert Pathologist Very, very skilled Endoscopist

ESD Learning Curve

Tanaka S. Gastrointest Endosc 2007;66

Training for ESD?

Only endoscopists who have mastered the ESD technique for gastric tumors should be allowed to perform ESD on esophageal or colorectal <u>tumors</u>

Tamegay Y, Saito Y. Endoscopy 2007; 39

ESD Learning Curve in Italy

Iacopini F. Gastrointest Endosc 2012

Large series of CR ESD: EAST vs WEST

Author/Year	Country	Pts	En Bloc	RO	Perf
Saito GIE 2010	Japan	1,111	88%	89%	4.9%
Probst Endoscopy 2012	Germany	82	81%	69%	1.3%
Repici GIE 2013	Italy	40	90%	80%	2.5%
Rahmi Endoscopy 2014	France	45	64%	53%	17.7%

R0 resection rates of endoscopic submucosal dissection performed with the standard technique in Asian countries

R0 resection rates of endoscopic submucosal dissection performed with the standard technique in non-Asian countries

EAST vs WEST

EPMR

TV Adenoma - HGD

3 months laterstricture (balloon dilation)

after 18 months

ESD with tunnelling technique for large lesions

Courtesy Fathi Aslan, MD – Istambul (Turkey)

Fibrosis: recurrence after EMR

Fibrosis: recurrence after TEM

Partial ESD (Incision-Assisted EMR)

LST in UC: Hybrid ESD

R0 resection rates of endoscopic submucosal dissection performed with the hybrid technique in Asian countries

R0 resection rates of endoscopic submucosal dissection performed with the hybrid technique in non-Asian countries

Studies comparing the standard versus hybrid technique

Study name				R0 / Total			Odds rat	io and 95% Cl
	Odds ratio	Lower limit	Upper limit	Standard	Hybrid			
Bae, 2016	1,403	0,219	9,009	29/31	31/34	1	1 -	
Bialek, 2014	0,612	0,112	3,334	30/37	14/16		_	■
Byeon, 2011	2,126	1,194	3,786	120/163	42/74			
Kim, 2013	2,821	1,425	5,581	44 /58	78/148			
Rahmi, 2014	21,250	4,605	98,068	20/24	4/21			
Lee, 2012	6,508	3,827	11,069	791/874	41/69			
Terasaki, 2012	0,415	0,046	3,727	56/61	27/28			+-1
Toyonaga, 2009	1,104	0,381	3,197	618/674	40/44			●
	2,442	1,230	4,846	1708 / 1922	277/434			•
						0,01	0,1	1 10 100
						Fav	ours Hyb	rid Favours Standard

EFTR with OTSC FTR Device (FTRD)

OTSC FTRD – Procedure (Video)

2015 ESGE Guidelines on CR ESD

 The majority of colonic and rectal superficial lesions can be effectively removed in a curative way by standard polypectomy and/or by EMR

(strong recommendation, moderate quality evidence)

- ESD can be considered for removal of colonic and rectal lesions with high suspicion of limited submucosal invasion that is based on two main criteria of depressed morphology and irregular or nongranular surface pattern, particularly if the lesions are larger than 20 mm
- ESD can be considered for colorectal lesions that otherwise cannot be optimally and radically removed by snare-based techniques

(strong recommendation, moderate quality evidence)

2015 "Western" Indications to ESD

- From an ethical and clinical point of view, colorectal ESD should be primarily limited to:
 - Lesions with an increased probability of early submucosal invasion
 - Selected EMR failures
 - Distal & Mid Rectum
- Patients can be centralized to institutions that are specialized in advanced diagnostic and therapeutic endoscopy of early neoplasia in the upper and lower gastrointestinal tract

Bourke MJ, Neuhaus H. Endoscopy 2014

Take Home Messages

- 1. Each rectal lesion suspected for SM invasion should be evaluated with diagnostic endoscopic and imaging modalities
- 2. MDB to discuss the case
- 3. HQ EMR to remove most of prox rectum LST-G & GM
- 4. HQ ESD to remove most of distal-mid rectum Lesions
- 5. Expert Endoscopists should master the ESD technique and use it appropriately, when indicated
- 6. Rectal ESD should be performed in few referral Centers, by <u>dedicated</u> endoscopists and mainly for lesions:
 - Distal & Mid Rectum lesions
 - Suspected SM1
 - Scars/recurrences

