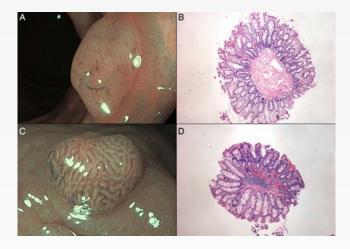


XII CONGRESSO NAZIONALE 2017

7-8 Novembre 2017


7 Novembre 2017

Prevalenza di neoplasia avanzata nei polipi diminutivi

Background

Optical diagnosis can replace histopathology for diminutive (1-

5mm) polyps

- Interferes with risk-stratification for determining interval surveillance colonoscopy:
 - Advanced histology
 - Multiplicity of adenomas

Background

 Previous modeling studies have shown optical diagnosis to be <u>cost-effective</u>¹⁻³

 However, based on <u>assumptions</u> for risk-stratification by diminutive polyps

Research questions IEE workgroup

- 1. What is the <u>proportion</u> of diminutive polyps with <u>advanced</u> <u>histological</u> features?
- 2. What is the <u>proportion of patients</u> that is categorized as <u>high-risk</u> due to diminutive polyps?
- 3. What are the <u>findings at first surveillance</u> colonoscopy of high-risk patients due to diminutive polyps?
- 4. Are there differences for these estimates between colonoscopy screening & surveillance and FOBT-screening?

Outcomes

- 1. <u>Proportion</u> of diminutive polyps with advanced histological features
- 2. <u>Proportion</u> of patients that is high-risk due to diminutive polyps
- 3. <u>Proportion</u> of high-risk outcomes of first surveillance colonoscopy of low- and high-risk patients

Definitions

- Low-risk patients:
 - 1-2 diminutive or small non-advanced adenomas

- High-risk patients:
 - Adenomatous polyp with advanced histology (i.e. ≥25% villous component, HGD or CRC)
 - ≥3 diminutive or small non-advanced adenomas
 - Adenoma or sessile serrated lesion ≥10mm

Methods

- International, multicenter <u>cohort</u> study
- Project-leaders of <u>prospective</u> databases (at least 1,000 participants) were contacted:
 - Colonoscopy screening & surveillance
 - FOBT-positive screening

Methods

Pre-designed datasheet:

- Cohort characteristics (origin, quality parameters, GI pathologist involved)
- Patient characteristics (number, age, sex)
- Polyp characteristics (number, histology, CRC)
- Outcomes of first surveillance colonoscopy (normal, low-risk, high-risk or CRC)

Outcomes:

Reported as <u>medians (range)</u>

Database characteristics

- 6 colonoscopy screening/surveillance databases (4 US and 2 Europe)
- 4 FOBT screening databases (4 Europe)

	Colonoscopy screening/surveillance	FOBT screening
Cohort size, n	1647 (1100-12226)	3903 (2817-19976)
Mean age in years	61 (56-63)	62 (60-65)
Male gender (%)	58 (51-72)	53 (48-57)

Question 1. Proportion of diminutive polyps with advanced histology?

	Colonoscopy screening/surveillance	FOBT screening
Diminutive polyps, n	2379 (1311-8708)	3718 (1227-7283)
CRC (%)	0% (0-0.04)	0.06% (0-0.29)
Advanced histology (%)	1.4% (0.5-2.8)	6.0% (2.5-18.9)

Question 2. Proportion of high-risk patients due to diminutive polyp?

	Colonoscopy screening/surveillance	FOBT screening
High-risk patients (%)	20.9% (7.0-49.7)	35.0% (29.9-38.7)
High-risk due to diminutive polyps (%)	34.1% (27.3-38.7)	10.7% (7.8-14.0)
Advanced histology (%)	5.7% (1.3-9.7)	4.8% (1.4-10.4)
Multiplicity (%)	29.7% (21.0-36.6)	5.8% (3.6-6.7)

Question 3. High-risk findings at surveillance colonoscopy of low- and high-risk patients?

	Outcome surveillance colonoscopy	
Index risk status	Colonoscopy screening/surveillance	FOBT screening
Low-risk	14.1% (13.1-21.0)	12.8% (7.8-17.8)
High-risk		
Advanced histology (%)	16.0% (8.0-29.7)	11.7% (4.6-18.8)
Multiplicity (%)	26.9% (25.0-35.3)	15.4% (6.7-24.0)
Other high-risk (%)	29.5% (19.4-38.0)	17.4% (13.8-20.9)

Conclusion

- Advanced histology in diminutive polyps is common in FOBT screening, but rare in colonoscopy screening/surveillance
- The proportion of patients defined as high-risk due to diminutive polyps is rare in FOBT screening, but common in colonoscopy screening/surveillance
- Amongst patients that are high-risk due to advanced histology within diminutive polyps, the risk of future advanced neoplasia seems equal to low-risk patients

Strengths

- Prospective databases including current quality indicators
- Majority of samples assessed by GI pathologists
- Comparison colonoscopy screening/surveillance and FITpositive

Limitations

- Variability between endoscopists in endoscopic sizing of polyps¹
- Variability between pathologists in grading advanced histology²
- Possibility of selection bias for outcomes of surveillance colonoscopy³

¹de Vries et al. European Journal of Radiology 2011.

²Fukunaga et al. 2014. American Journal of Surgical Pathology 2005.

³van Heijningen et al. Gut 2015.

