

TITIC TO TO TO

Radisson Blu Ghr Rome, Roma, 21-22 novembre 2024

TFOF

XVI CONGRESSO NAZIONALE 2024

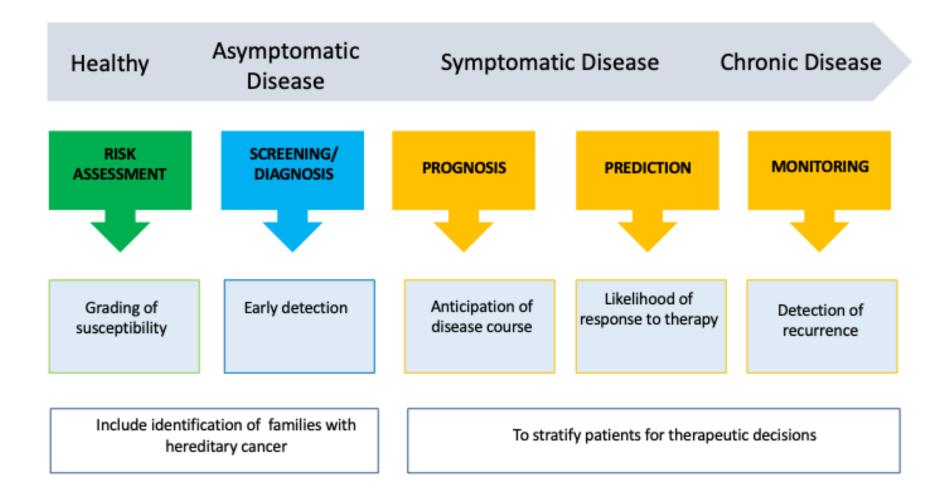
"LIQUID BIOPSY" E "MOLECULAR TOOLS" PER LA DIAGNOSTICA DELLO SCREENING CRC: FATTIBILITÀ VS ASPETTATIVE

Luigi Laghi

Professore Ordinario di Gastroenterologia

Università degli Studi di Parma

What are CRC molecular subtypes used for?


Clinical contexts

- \succ Diagnosis \Rightarrow molecular subtypes, linked to:
- > Outcome

- Prognostication
- Prediction

Translational efforts apply to different clinical scenarios

All clinical scenarios contributed to the scientific development

of CRC molecular genetics

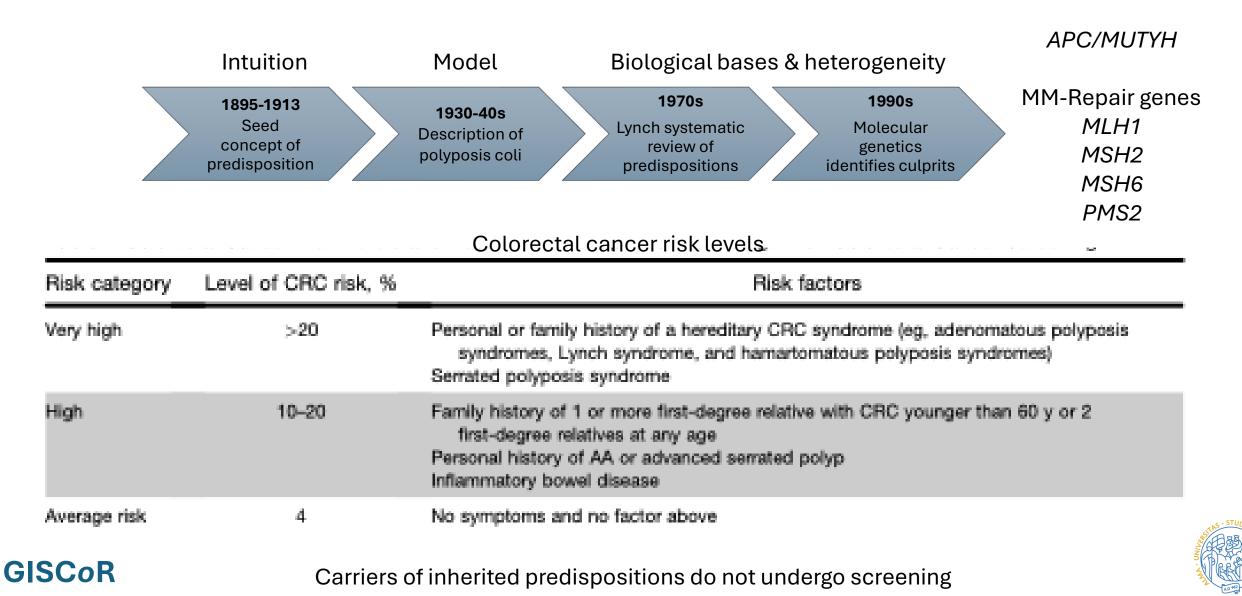
Scenario

- Susceptibility
- Early detection
- Prognosis
- Prediction/monitoring:

Field / application

inherited predispositions

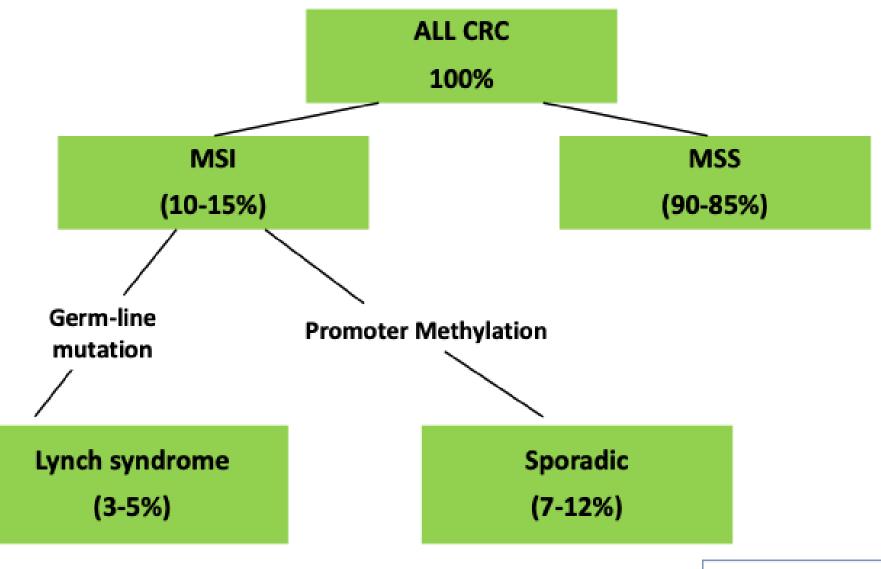
molecular stool tests – recently, blood


different behavior (e.g. MSI vs MSS), ctDNA

KRAS mutations in liquid biopsies

ctDNA

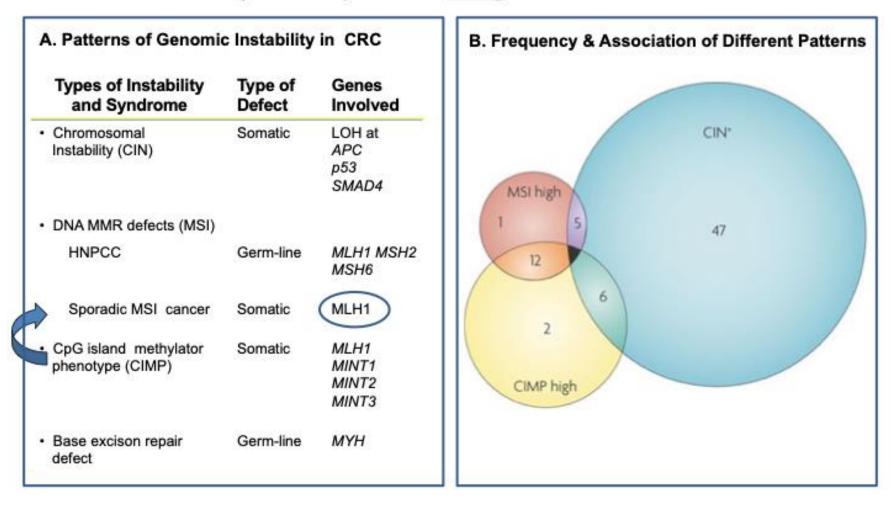
Developmental pathway of molecular genetics in GI oncology: the contribution of inherited predispositions


Molecular phenotypes of CRC – evolution over time

CRC understanding, time-laps

- Early 90s': oncogene activation (e.g. *KRAS*) + tumor suppressor silencing (e.g. *APC*, *TP53*)
- Mid 90s': Microsatellite instability (MSI) vs Chromosomal instability (CIN, or MS-Stable)
- Early 2000s': CpG Methylator phenotype
- NGS evolution: Consensus Molecular Subtypes (CMS 1-4; mRNA expression patterns)

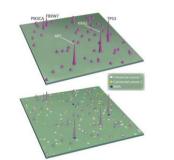
Prevalence of MSI CRC subclasses

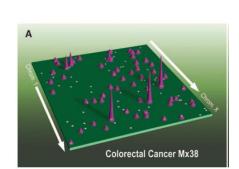


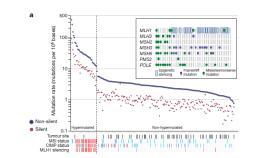
De La Chapelle, JCO 2010

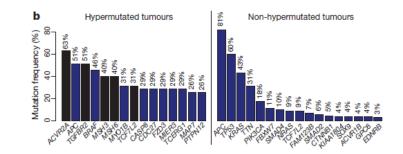
Molecular phenotypes of CRC – scenario in the 2010s

CpG Island methylator phenotype (CIMP): a distinct CRC pathway which may lead to MSI

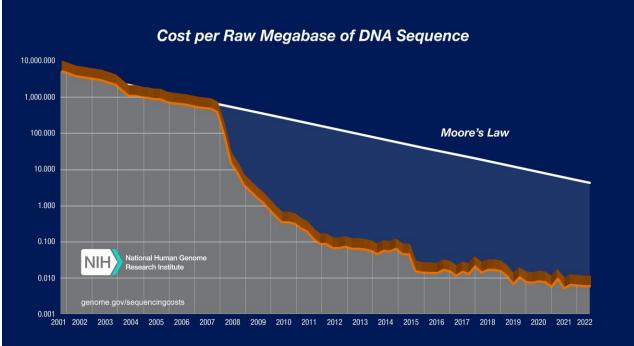

Evolving impact of molecular genetics on CRC

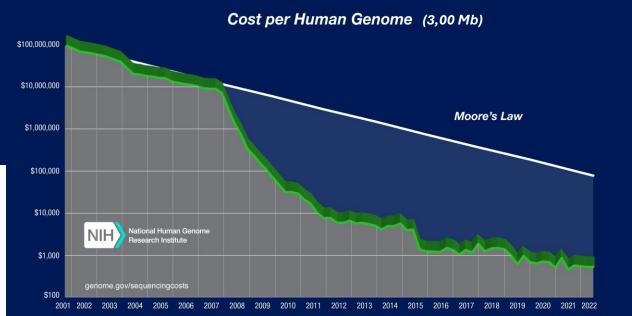

Descriptive era


- 1. Inherited predispositions, \uparrow risk and disease behavior
- 2. Somatic mutational signature \rightarrow relevance of specific mutations
- 3. "Landscape" perspective = NGS breakthrough
 - → similarities/differences (mountain & hills; driver & passengers)

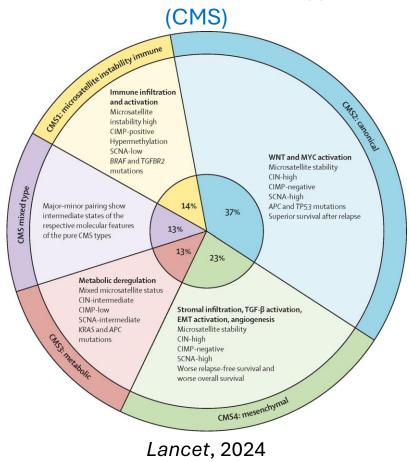

Actionability era

- 1. Mutational patterns as determinants of drug responsiveness the anti EGRF story \rightarrow RAS mutations and siblings
- 2. Landscape-oriented search for actionable mutations




DNA Sequencing Technologies and costs over time *«From analogic to digital»*

2001 - 2007: first generation – Sanger Since 2008: second generation or «next» NGS


> National Human Genome Research Institute (NHGRI) Costs by 2022

Moore's Law, describes a long-term trend in the computer hardware industry that involves the doubling of 'compute power' every two years. Technology improvements that 'keep up' with Moore's Law are widely regarded to be doing exceedingly well.

CRC: molecular world and screening universe. Competition or communication?

Consensus Molecular Subtypes

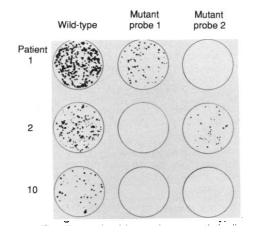
GISCoR

Table 2. Recommended Noninvasive Colorectal Cancer Screening Test Characteristics

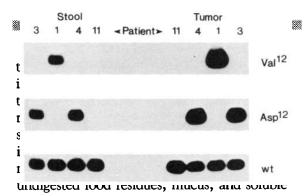
	Sensitivity, % (95% CI)		Specificity, 9	% (95% CI)
Test accuracy	CRC	AA	CRC	AA
FIT ¹⁶				
≤10 μg/g >10 to ≤20 μg/g >20 to ≤30 μg/g	80 (76–83) 69 (63–75) 73 (62–81)	31 (27–35) 21 (18–25) 18 (13–23)	91 (89–93) 94 (93–96) 96 (95–97)	NR NR NR
FIT ¹⁷ 10 μg/g 20 μg/g	91 (84–95) 75 (61–86)	40 (33–47) 25 (20–31)	90 (86–93) 95 (92–96)	90 (87–93) 95 (93–96)
Pivotal trial ¹⁸ FIT (20 μg/g) MTsDNA	74 (61–84) 92 (83–97)	24 (21–27) 42 (39–46)	95 (94–95) 87 (86–87)	NR NR
Septin 9 ²²	48 (32–64)	11 (7–16)	91.5 (90–93)	NR
			0 · · · ·	1

NR, not recommended.

Gastroenterology, 2022


(Early) diagnosis: the beginning of the "molecular competition" <u>Proof of concept</u>

- 12. O. A. Nali, D. W. DOWER, J. O. AVISE, Genetics, III press.
- 13. Locations and sample sizes for American oysters in the present study are as follows: MA, Woods Hole, MA (n = 35); SC, Charleston, SC (23); GA, Cumberland Island, GA (33); FL1, New Smyrna Beach, FL (30); FL2, Stuart, FL (29); FL3, Port Charlotte, FL (29); FL4, Panacea, FL (39); FL5, Carabelle River, FL (18); and LA, Grand Isle, LA (41). Living oysters were collected and placed on wet ice for transportation to the laboratory. Total cell DNA was extracted from mantle-gonad tissue by homogenizing in 50 mM tris-HCI (pH 8.0), 100 mM EDTA, and 100 mM NaCl followed by one cycle of phenol, phenol-chloroform, and chloroform extraction. RNA was removed by ribonuclease A digestion for 3 hours followed by a repeat of the organic extractions described above. We precipitated DNA by adjusting the aqueous fraction to a final concentration of 300 mM sodium acetate and 70% ethanol: it was then vacuum-dried and resuspended in 1 x TE (10 mM tris-HCL nH 8.0.1


light. Polymorphisms were indicated by the gain or loss of fragments in the restriction profiles.

16. To eliminate the possibility that our nuclear loci mistakenly may have represented mtDNA polymorphisms, we probed a Southern (DNA) blot of the amplified scnDNA products with purified ovster mtDNA. No bands appeared in the autoradiogram except in control lanes. The hypothesis of mtDNA contamination is further discounted by the nature of the scnDNA polymorphisms themselves. which involved diploid genotypes with general conformance to Hardy-Weinberg expected genotypic frequencies. This result further supports the idea that the loci are inherited in a Mendelian fashion. In addition, all pairwise comparisons of the four loci show insignificant deviations from gametic equilibrium [B. S. Weir and C. C. Cockerham, in Mathematical Evolutionary Theory, M. E. Feldman, Ed. (Princeton Univ. Press, Princeton, NJ, 1989), pp. 86-1101.

17 D W Garton R K Knehn T M Scott Constinue

GISCoR

REPORTS

tract. Furthermore, it contains numerous degradative enzymes derived from cells, food, and bacteria. It was therefore unclear whether mutant genes from tumor cells could survive in this hostile environment and be detectable in clinical specimens.

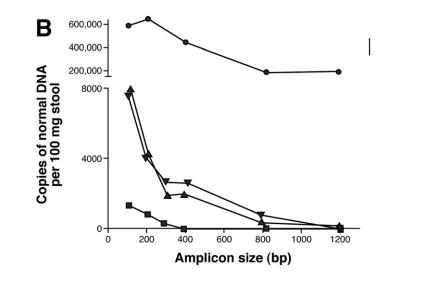
To investigate this possibility, we examined stools from individuals with CR tumors for mutations of K-ras at codons 12 or 13, which occur commonly in these neoplasms (8-12). We first analyzed tumors from 24 patients for the presence of K-ras gene mumost reproducible procedure was used (18). Approximately 100 mg of stool frozen at -80° C was diluted with 300 µl of lysis buffer [500 mM tris, 16 mM EDTA, 10 mM NaCl (pH 9.0)], and particulates and most bacteria were removed by centrifugation. Proteins were digested with proteinase K and extracted with phenol and chloroform. After ethanol precipitation, the DNA was further purified by binding to glass beads. From 0.5 to 5.0 µg of DNA was typically obtained. The first exon of K-ras was then

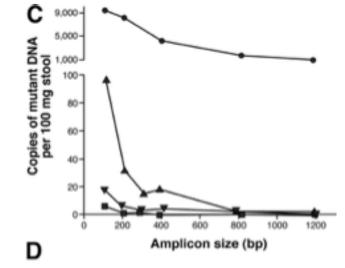
Detection rate: 8/9 *RAS* mutated, 88.9% 0 false positive

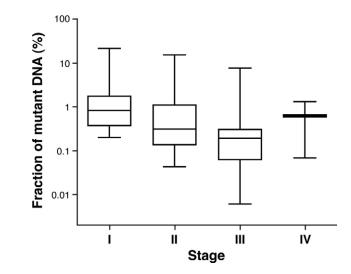
Fecal DNA versus Fecal Occult Blood for CRC Screening in an average risk population

Table 2. Most Advanced Finding	at Colonoscopy ar	d Results of the	Fecal DNA Pane	l and Occult-Blood Te	st in the Analyz	ed Subgroup.*
Most Advanced Finding at Colonoscopy	Group That Could Be Evaluated (N=4404)	Analyzed Subgroup (N=2507)†	Positive F	ecal DNA Panel	Positive O	ccult-Blood Test
	~	9.	no./total no.	% (95% CI)	no./total no.	% (95% CI)
Adenocarcinoma	31	31	16/31	51.6 (34.8-68.0)	4/31	12.9 (5.1-28.9)
TNM stage I	15	15	8/15	53.3 (30.1-75.2)	1/15	6.7 (1.2-29.8)
TNM stage II	8	8	5/8	62.5 (30.6-86.3)	2/8	25.0 (7.1-59.1)
TNM stage III	8	8	3/8	37.5 (13.7-69.4)	1/8	12.5 (2.2-47.1)
TNM stage IV	0	0	0		0	
Adenocarcinoma + high-grade dysplasia	72	71	29/71	40.8 (30.2-52.5)	10/71	14.1 (7.8–24.6)
Advanced adenoma	426	403	61/403	15.1 (12.0-19.0)	43/403	10.7 (8.0-14.1)
High-grade dysplasia	41	40	13/40	32.5 (20.1-48.0)	6/40	15.0 (7.1-29.1)
Villous adenoma	139	133	24/133	18.0 (12.4-25.4)	13/133	9.8 (5.8-16.0)
Tubular adenoma ≥1 cm	230	214	23/214	10.7 (7.3-15.6)	22/214	10.3 (6.9-15.1)
Unspecified	16	16	1/16	6.2 (1.1-28.3)	2/16	12.5 (3.5-36.0)
Minor polyps:	1627	648	49/648	7.6 (5.8–9.9)	31/648	4.8 (3.4-6.7)
Tubular adenoma <1 cm	762	286	23/286	8.0 (5.9-12.7)	15/286	5.2 (3.5-9.2)
Hyperplastic	633	276	17/276	6.2 (3.9-9.6)	10/276	3.6 (2.0-6.5)
Unspecified	232	86	9/86	10.5 (5.6-18.7)	4/86	4.6 (1.8-11.4)
No polyps on colonoscopy§	2318	1423	79/1423	5.6 (4.5–6.9)⇔94.	6 68/1423	4.8 (3.9–5.8)⇔95.:

Fecal DNA versus Fecal Occult Blood for Colorectal-Cancer Screening in an average risk population

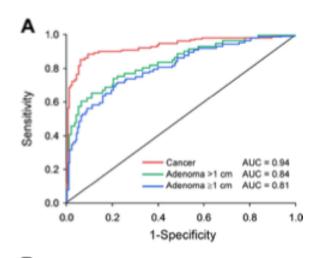

Most Advanced Finding at Colonoscopy	Total No.			Positive F	ecal DNA		
		Overall	K-ras	р53	АРС	BAT-26*	Long DNA†
			·	number	(percent)		- *
Adenocarcinoma	31	16 (51.6)	5 (16.1)	8 (25.8)	9 (29.0)	2 (6.5)	1 (3.2)
Advanced adenoma	403	61 (15.1)	18 (4.5)	11 (2.7)	27 (6.7)	5 (1.2)	8 (2.0)
High-grade dysplasia	40	13 (32.5)	5 (12.5)	2 (5.0)	3 (7.5)	0	5 (12.5
Other	363	48 (13.2)	13 (3.6)	9 (2.5)	24 (6.6)	5 (1.4)	3 (0.6)
Minor polyps	648	49 (7.6)	19 (2.9)	5 (0.8)	16 (2.5)	4 (0.6)	8 (1.2)
No polyps on colonoscopy	1423	79 (5.6)	22 (1.5)	16 (1.1)	11 (0.8)	16 (1.1)	18 (1.3)

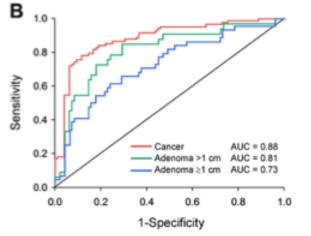

* BAT-26 is a microsatellite-instability marker.


† A marker of long DNA is thought to reflect disordered apoptosis of cancer cells sloughed into the colonic lumen.

Analysis of mutations in DNA isolated from plasma and stool of CRC patients

Paired specimens	Number	Positive	Yield
Stool	25	23	92%
Plasma	16	8	50%




Dihel F, Gastroenterology, 2008

Next-Generation stool DNA test accurately detects CRC and large adenomas

89 (85-92)

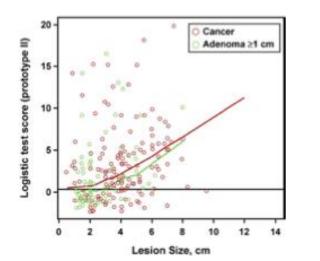
89 (85-92)

	Sensitivity, % (95% Cl)	Observed specificity, % (95% CI)				
Training set						
Cancer	89 (83-93)	90 (85-94)				
Adenoma						
Size >1 cm	62 (49-74)	90 (85-94)				
Size ≥1 cm	56 (45-67)	90 (85-94)				
Test set						
Cancer	78 (68-86)	85 (77-92)				
Adenoma						
Size >1 cm	64 (45-80)	85 (77-92)				
Size ≥1 cm	48 (31-66)	85 (77-92)				
Combined						
Cancer	85 (80-89)	89 (85-92)				
Adenoma						

63(52 - 73)

53 (45-62)

Table 2. Neoplasm Detection Rates by a Next-Generation


Stool DNA Test^a

T

17

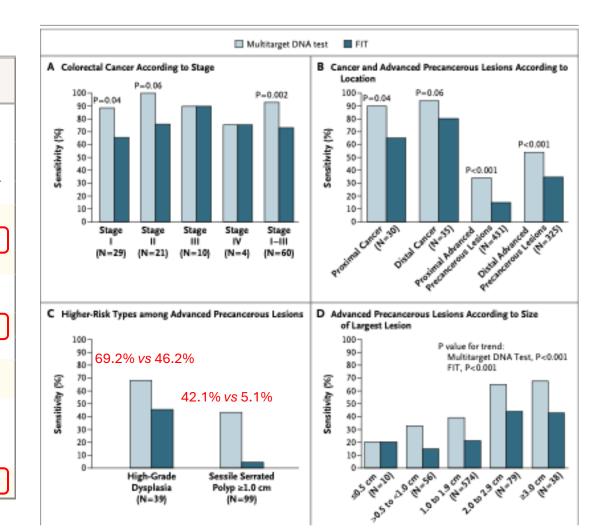
Size >1 cm

Size ≥1 cm

Investigation

- 52 CRC
- 133 advanced adenoma
- 293 ctrls
- Random assignemnt
- \circ 2/3 trainin set
- o 1/3 test set

sDNA test detects

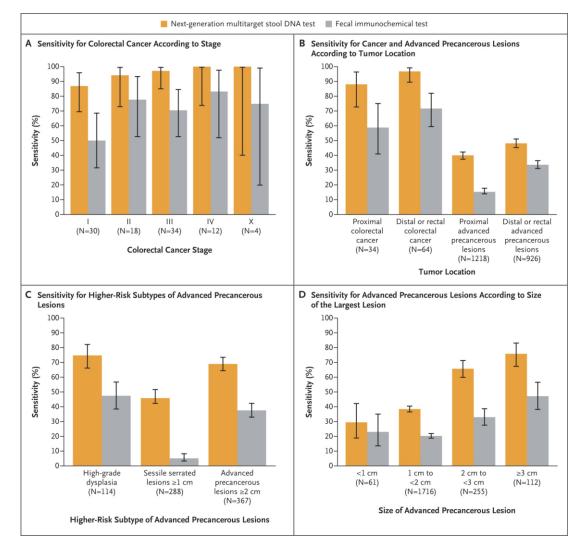

- 4 methylated genes*
- mutant KRAS*
- also quantifies hemoglobin

*by quantitative, allele-specific, real-time target and signal amplification

Ahlqist, Gastroenterology, 2012

Multitarget stool DNA testing for CRC screening

Most Advanced Finding	Colonoscopy (N = 9989)		nget DNA Test N = 9989)	FIT (N = 9989)		
		Positive Results	Sensitivity (95% CI)	Positive Results	Sensitivity (95% CI)	
	100.	110.	%	no.	%	
Colorectal cancer						
Any	65	60	92.3 (83.0-97.5)	48	73.8 (61.5-84.0	
Stage I to III*	60	56	93.3 (83.8-98.2)	44	73.3 (60.3-83.5	
Colorectal cancer and high-grade dysplasia	104	87	83.7 (75.1-90.2)	66	63.5 (53.5-72.)	
Advanced precancerous lesions†	757	321	42.4 (38.9-46.0)	180	23.8 (20.8-27.0	
Nonadvanced adenoma	2893	498	17.2 (15.9-18.6)	220	7.6 (6.7-8.6)	
			Specificity (95% CI)		Specificity (95% CI)	
All nonadvanced adenomas, non-neoplastic findings, and negative results on colonoscopy	9167	1231	86.6 (85.9-87.2)	472	94.9 (94.4–95.)	
Negative results on colonoscopy	4457	455	89.8 (88.9-90.7)	162	96.4 (95.8-96.)	


Imperiale TF, NEJM, 2014

Sensitivity and specificity of the next-generation multitarget stool DNA test and the commercial FIT

Variable	Colonoscopy (N=20,176)	Next-Generation Multitarget Stool DNA Test (N=20,176)		Colonoscopy Stool DNA Test		(FIT N = 20,176)
	No. of Participants	No. of Results	Assessment (95% CI)	No. of Results	Assessment (95% CI)		
			%		%		
Sensitivity							
Colorectal cancer							
Any	98	92	93.9 (87.1–97.7)†	66	67.3 (57.1–76.5)		
Stage I, II, or III‡	82	76	92.7 (84.8–97.3)	53	64.6 (53.3–74.9)		
Advanced precancerous lesions	2,144	931	43.4 (41.3–45.6)†	500	23.3 (21.5–25.2)		
High-grade dysplasia	114	85	74.6 (65.6–82.3)	54	47.4 (37.9–56.9)		
Specificity							
Advanced neoplasia§	17,934	16,245	90.6 (90.1–91.0)	16,997	94.8 (94.4–95.1)¶		
Nonneoplastic findings or negative colonoscopy	10,961	10,156	92.7 (92.2–93.1)	10,492	95.7 (95.3–96.1)		
Negative colonoscopy**	7,510	7,012	93.4 (92.8–93.9)	7,207	96.0 (95.5–96.4)		

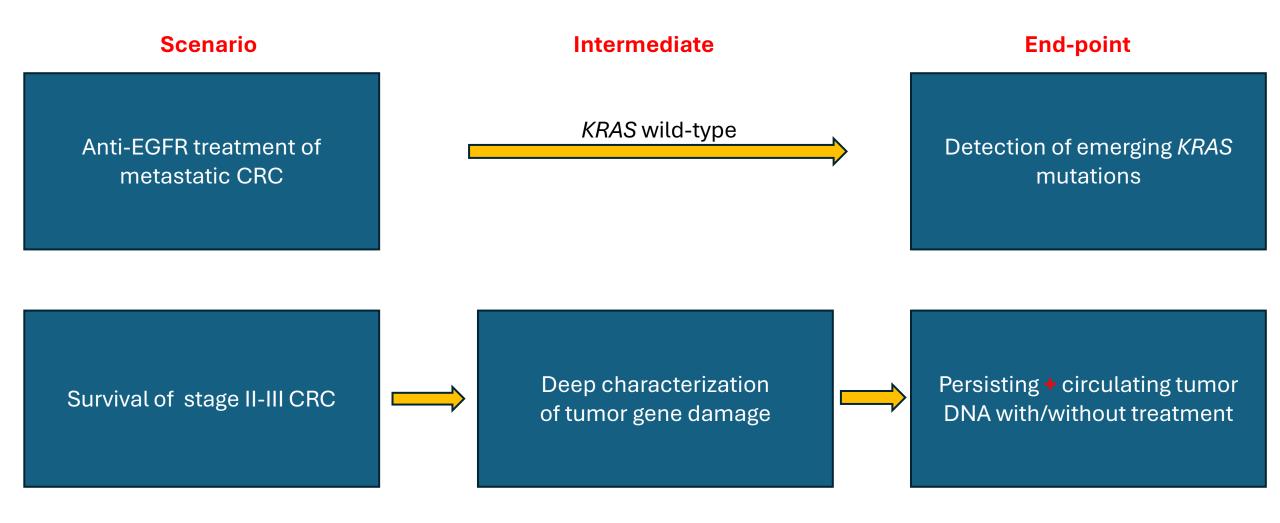
Primary aim: improve specificity.

- It appears unlikely that adding "test on test" would î specificity
- More likely adding molecular markers to FIT would 1 sensitivity

Imperiale TF, 2004

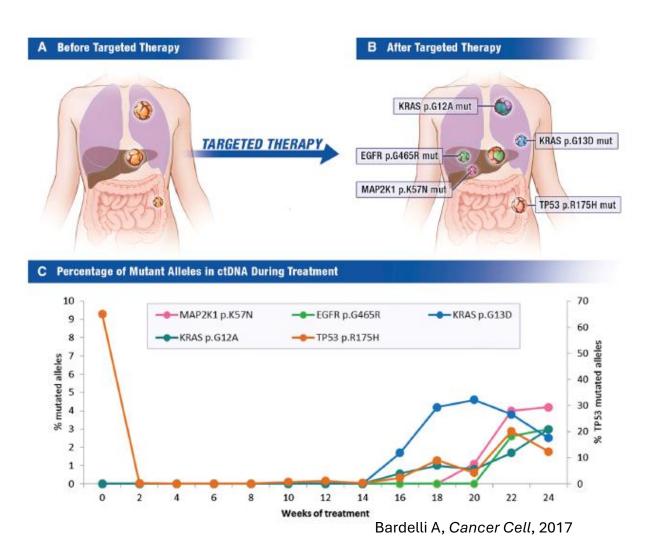
Commentaries to the papers by Imperiale

- Adaption of the cutoff value to yield specificity similar to that reported for the MTs DNA test by Imperiale et al. (86.6%) resulted in very similar sensitivities for both tests (i.e., 86.7%) Brenner H, *NEJM*, *2014*
- A commercial FIT can achieve similar diagnostic results to the newer stool DNA test. Lowering the positivity threshold of a high-quality FIT may be a much more economical way to increase sensitivity. Seum T, JAMA Int Med, 2024

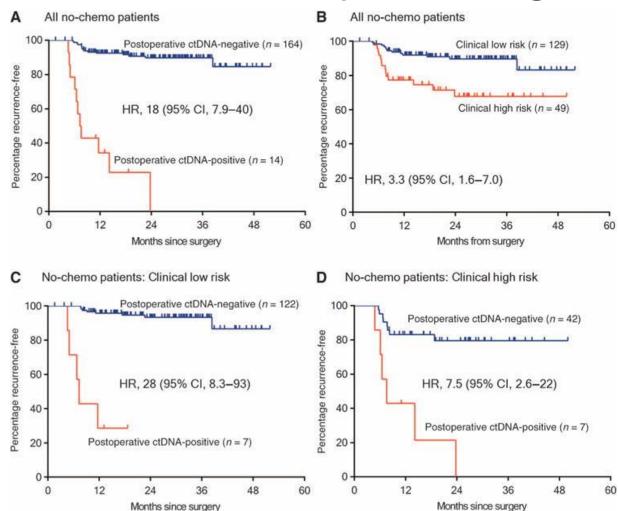

		Study		
		BLUE-C*	BLITZ	
Metric	Outcome	NG-MSDT	FIT ^c (cutoff 11.7 µg/g)"	FIT* (cutoff 10 µg/g) ^r
Sensitivity	CRC, any stage	93.9 (87.1-97.7)	94.7 (85.4-98.9)	96.5 (87.9-99.6)
(95% CI)	CRC, stage I-III	92.7 (84.8-97.3)	93.8 (82.8-98.7)	95.8 (85.7-99.5)
	Advanced precancerous lesion	43.4 (41.3-45.6)	38.3 (34.8-41.9)	41.5 (38.0-45.1)
	Any advanced neoplasm	45.6 (43.6-47.7)	42.3 (38.9-45.8)	45.4 (41.9-48.9)
Specificity (95% CD	No advanced neoplasm	90.6 (90.1-91.0)	90.6 (89.8-91.3)	89.0 (88.2-89.8)

Sceanarios driving liquid biopsy development

Exploiting liquid biopsy in clinical practice



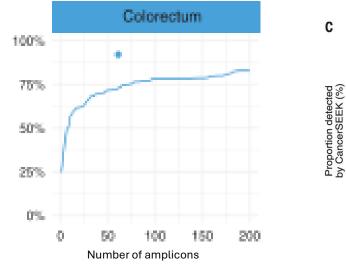
Rationales for liquid biopsies in driving or monitoring treatments

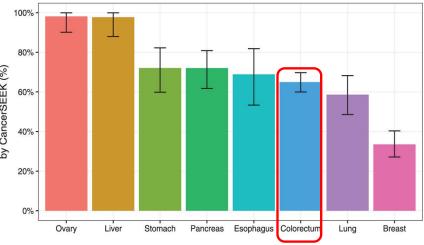


Emergence/selection of mutant alleles during pharmacological treatment

Liquid biopsy and and postoperative disease progression in stage II by circulating tumor DNA (ctDNA)

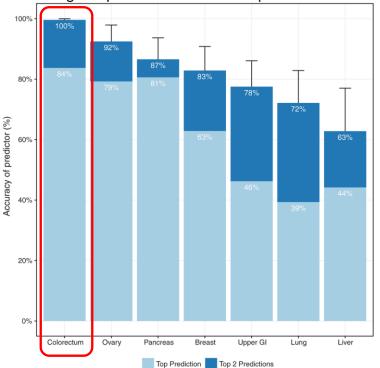

Total, 230 pts, no adjuvant therapy, 178

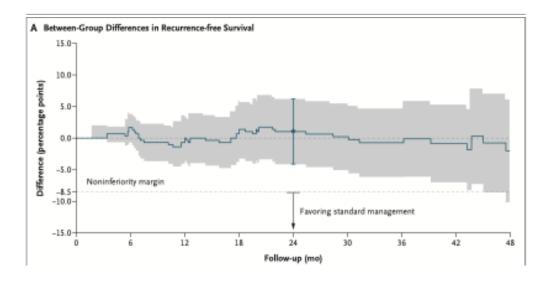

ctDNA +, 14 (7.9%) -> 11 (79%) recurred ctDNA - , 164 (92.1%) -> 16 (9.8%) recurred

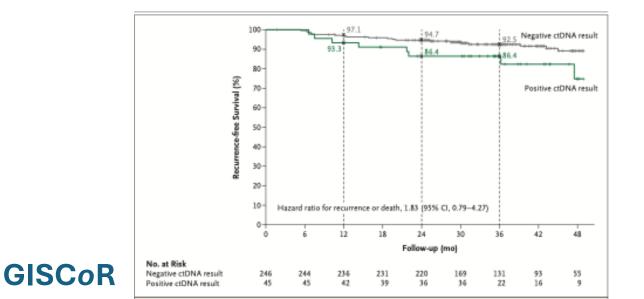

In patients treated with chemotherapy, the presence of ctDNA was also associated with an inferior recurrence-free survival (HR, 11; 95% CI, 1.8 to 68; P = 0.001

Detection and localization of surgically resectable cancers with a multi-analyte blood test (CancerSEEK)

Ultradeep sequencing + protein biomarkers



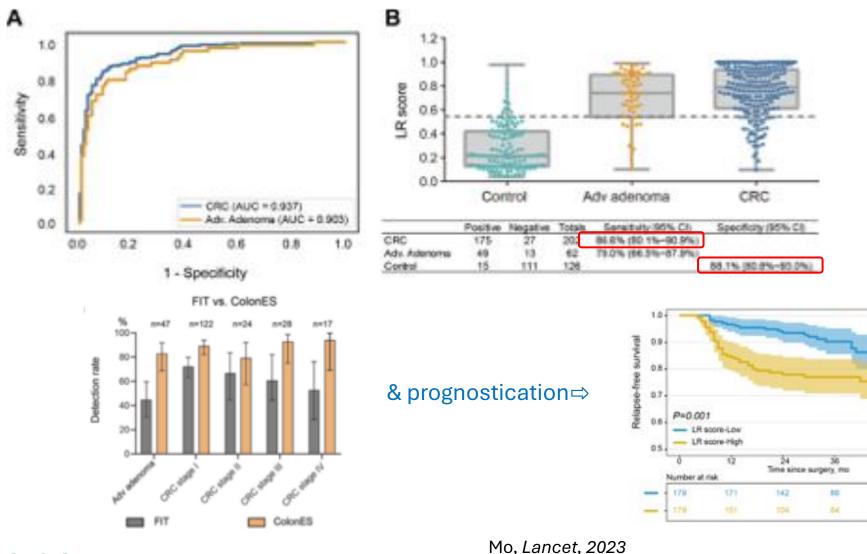

Cohen JD, Science, 2018


Identification of cancer type by supervised machine learning for patients classified as positive.

Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer

455 patients

302, ctDNA guided management 153, standard management


Chemo: 15% in ctDNA management 28% in standard RR 1.82 (95%Cl, 1.25-2.65)

3-year recurrence-free survival, 86.4% among ctDNA+ patients who received adjuvant chemotherapy and 92.5% among ctDNA-negative patients who did not.

Tie J, *NEJM*, 2022

Early detection and prognosis prediction for CRCby circulating tumour DNA methylation haplotypes: a multicentre cohort study

590 CRC patients182 advanced adenoma patients366 healthy controls

E

345

€ ⁸⁰/₇₀

70· 60·

50-

30

20

STUD OF

RFS status

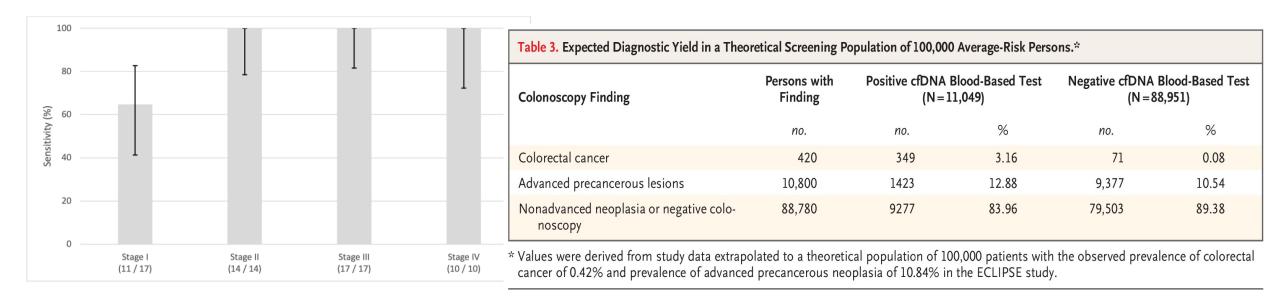
IIII No relapse

Relapse

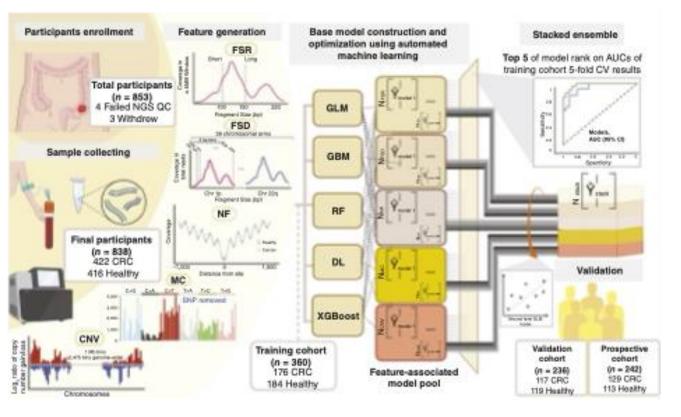
GISCoR

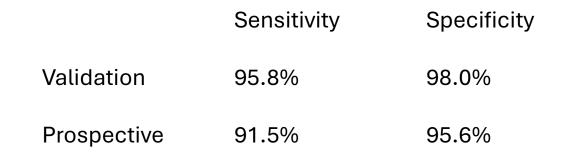
A Cell-free DNA Blood-Based Test for CRC Screening

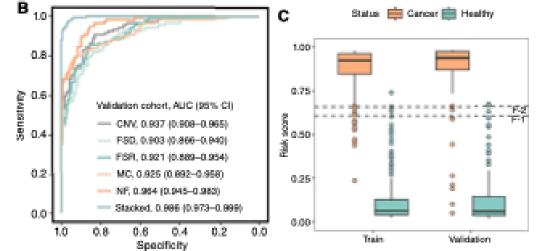
Table 2. Sensitivity and Specificity of the Cell-free D Colonoscopy.*		ased Test for the Mo	st Advanced Findings on
Variable	Most Advanced Finding on Colonoscopy	cfDNA E	Blood-Based Test
		Positive Test	Sensitivity (95% CI)
	no.	no.	%
Colorectal cancer			
Any	65	54	83.1 (72.2–90.3)
Stage I, II, or III*	48	42	87.5 (75.3–94.1)
Advanced precancerous lesions†	1116	147	13.2 (11.3–15.3)
			Specificity (95% CI)
Nonadvanced adenomas, nonneoplastic findings, and negative colonoscopy	6680	698	89.6 (88.8–90.3)
Nonneoplastic findings and negative colonoscopy	4514	457	89.9 (89.0–90.7)


* Excluded were 10 stage IV and 7 pathologically confirmed, incompletely staged colorectal cancers.

† Advanced precancerous lesions include advanced adenomas and sessile serrated lesions at least 10 mm in the largest dimension.

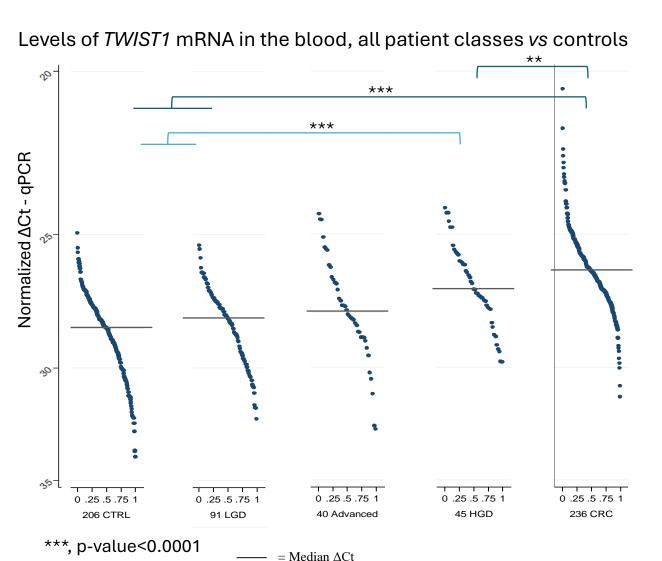

A Cell-free DNA Blood-Based Test for CRC Screening

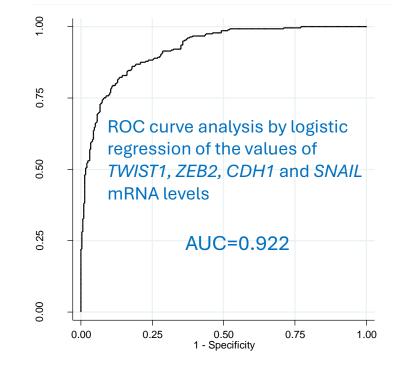



Pathology confirmed, incompletely staged cancers not shown (N = 7)

Sensitivity : all stages, 89.7%. Stage I only, 64.7%

Multidimensional fragmentomics enables early and accurate detection of CRC





GISCoR

Cao, Cancer Res, 2024

Ascertainment of CRC by a liquid biopsy assessing Epitelial to Mesenchymal Transition factors mRNA levels in blood

	Detection	Sens	Spec
CRC	205/236	86.9%	89.6%
HGD	28/45	62.2%	
AA	16/40	40.0%	

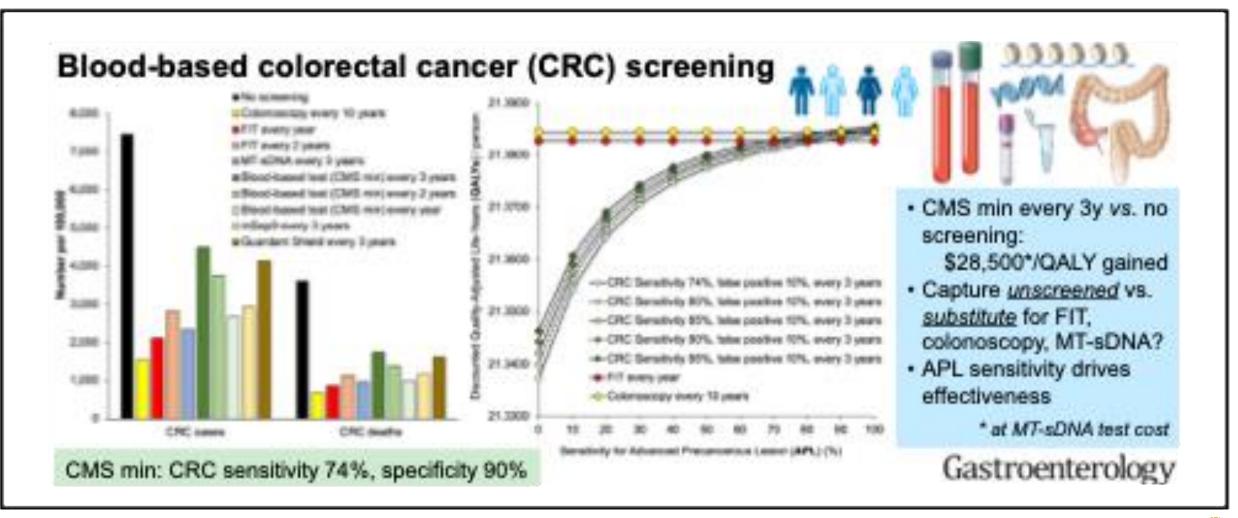
Greco L, manuscript in preparation

**, p-value<0.05

Effectiveness and Cost-Effectiveness of CRC Screening With a Blood Test That Meets the Centers for Medicare & Medicaid Services Coverage Decision

		Sensitivit	y ^a by size of the mo	st advanced lesio	on		•***	© Columencopy scoregrame
Screening test	1 - specificity	Adenomas 1 to <6 mm	Adenomas 6 to <10 mm	Adenomas ≥10 mm	CRC	Source	150-	- SpiperColor
FIT	0.036	0.0	176 ⁰	0.238°	0.738	15		Stand sent (CMS) Stand sent (CMS)
sDNA-FIT	0.09	0.	15 ^b	0.42*	0.94	15	100-	Change Jane KOMIN, 50-85
Blood test (CMS)	0.1	0.1*	0.14	0.1	0.74	9		
Colonoscopy	0.1325	0.69	0.81	0.91	0.91	16,17		
Sensitivity analysis FIT Blood test (Epi proColon) Blood test (Shield) Blood test (CMS)	0.036 0.196 0.1 0.1	0.2 ⁴ 0.1 ⁴ 0.1 ⁴	0.2" 0.1" 0.1	0.238° 0.204 0.13 0.1″	80%' 0.702 0.83 80%'	15,28 22,23 24 9,28	50-	

Net cost per 1,000 45 yr-olds


C. Class (20)

Even with higher screening uptake, triennial blood-based screening, with the CMS-specified minimum performance sensitivity of 74% and specificity of 90%, was not projected to be cost-effective compared with established strategies for CRC screening.

GISCoR

Van den Putelaar, Gastroenterology, 2024

Molecular competition as of now

AGA commentary offers reality check on blood-based CRC screening

- A blood test for CRC that meets minimal CMS criteria for sensitivity and performed every three years would likely result in better outcomes than no screening.
- Because blood tests for CRC are predicted to be less effective and more costly than currently established screening programs, they cannot be recommended to replace established effective screening methods
- Potential <u>benchmarks</u> that <u>industry</u> might use to assess an effective blood test for CRC going forward would be sensitivity for stage I-III CRC of >90%, with sensitivity for advanced adenomas of > 40-50%.

Diagnosis added to the clinical scenarios of CRC molecular genetics

Feasibility	Expectations
Molecular tests in the digital era allow CRC (early) detection in	Translation from diagnosis to screening requires
• blood	 specificity implementation
• stool	 cost reduction
Yet, fingerprinting of precursor lesions=unsatisfactory	 proper assessment of the timing of test administration (<i>interval cancers</i>?)

What are dreaming of?

